## Week 1 (9/16/02)

## Basketball and tennis ball

(a) A tennis ball with (small) mass $m_{2}$ sits on top of a basketball with (large) mass $m_{1}$. The bottom of the basketball is a height $h$ above the ground, and the bottom of the tennis ball is a height $h+d$ above the ground. The balls are dropped. To what height does the tennis ball bounce?


Note: Work in the approximation where $m_{1}$ is much larger than $m_{2}$, and assume that the balls bounce elastically.
(b) Now consider $n$ balls, $B_{1}, \ldots, B_{n}$, having masses $m_{1}, m_{2}, \ldots, m_{n}$ (with $\left.m_{1} \gg m_{2} \gg \cdots>m_{n}\right)$, sitting in a vertical stack. The bottom of $B_{1}$ is a height $h$ above the ground, and the bottom of $B_{n}$ is a height $h+\ell$ above the ground. The balls are dropped. In terms of $n$, to what height does the top ball bounce?


Note: Work in the approximation where $m_{1}$ is much larger than $m_{2}$, which is much larger than $m_{3}$, etc., and assume that the balls bounce elastically.

If $h=1$ meter, what is the minimum number of balls needed for the top one to bounce to a height of at least 1 kilometer? To reach escape velocity? Assume that the balls still bounce elastically (which is a bit absurd here). Ignore wind resistance, etc., and assume that $\ell$ is negligible.

