Week 56 (10/6/03)
Stirling's formula

Using $N!=\int_{0}^{\infty} x^{N} e^{-x} d x$ (which you can prove by induction), derive Stirling's formula,

$$
N!\approx N^{N} e^{-N} \sqrt{2 \pi N}
$$

Also, find the order- $1 / N$ correction to this (and the order- $1 / N^{2}$ correction, if you really want to).

