
Solution

Week 16 (12/30/02)

Letters in envelopes

First Solution: (This solution is due to Aravi Samuel.) We will use induction on
N . Let BN denote the number of “bad” configurations where none of the N letters
end up in the correct envelope. We claim that BN+1 = N(BN + BN−1). This can
be seen as follows. In proceeding inductively from N to N +1 letters, there are two
possible ways we can generate bad configurations:

• Given a bad configuration with N letters, we can create a bad configuration
with N +1 letters by simply placing down the (N +1)st letter in its envelope,
and then trading that letter with any of the other N letters. This provides us
with NBN bad configurations.

• We can also create a bad configuration with N +1 letters by taking a configu-
ration of N letters where exactly one letter is in the correct envelope (there are
NBN−1 such configurations) and then trading that letter with the (N + 1)st
letter. This provides us with NBN−1 bad configurations.

We therefore see that BN+1 = N(BN + BN−1). The probability of obtaining a bad
configuration with N letters is PN = BN/N !. Hence, BN = N ! PN , and so

(N + 1)!PN+1 = N
(
N ! PN + (N − 1)!PN−1

)

=⇒ (N + 1)PN+1 = NPN + PN−1. (1)

To solve this recursion relation, we can write it in the more suggestive form,

PN+1 − PN = − 1
N + 1

(
PN − PN−1

)
. (2)

Since P1 = 0 and P2 = 1/2, we have P2 − P1 = 1/2. We then find inductively that
Pk − Pk−1 = (−1)k/k! . Therefore,

PN = P1 +
N∑

k=2

(Pk − Pk−1)

= 1− 1 +
N∑

k=2

(−1)k

k!

=
N∑

k=0

(−1)k

k!
. (3)

This is simply the partial series expansion for e−1. So for large N , it approaches
1/e ≈ 37%. This series expansion for 1/e converges very rapidly, so N does not
have to be very large for the approximation PN ≈ 1/e to be valid. For example, if
N = 5 we have P5 − 1/e ≈ 0.001.

Remark: This 1/e result in the large-N limit can also be seen in the following way. The
probability that a given letter does not end up in its corresponding envelope is 1 − 1/N .
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Therefore, if we ignore the fact that the placements of the letters are related (they are
related because two letters cannot end up in the same envelope), then the probability that
no letter ends up in the correct envelope is

(
1− 1

N

)N

≈ 1
e

. (4)

It is not obvious that the correlations between the letters can be neglected here, but in view
of the above result, this is apparently the case.

Second Solution: Let PN be the probability that none of the N letters end up
in the correct envelope. Let Li and Ei denote the ith letter and corresponding
envelope, respectively.

Consider a given letter, La1 , and assume that no letter ends up in the correct
envelope. Then La1 must end up in some Ea2 , with a2 6= a1. La2 will then end
up in some Ea3 . La3 will then end up in some Ea4 , and so on. Eventually, one of
the envelopes in this chain must be Ea1 . Let it be Ean+1 . We may describe this
situation by saying that La1 belongs to a “loop” of length n. If no letter ends up in
the correct envelope, then n can be any number from 2 to N .

Claim: The probability that the loop containing La1 has length n is equal to 1/N ,
independent of n.

Proof: La1 has an (N − 1)/N probability of ending up in some Ea2 , with a2 6=
a1. La2 then has an (N − 2)/(N − 1) probability of ending up in some Ea3 , with
a3 6= a2, a1. This continues until Lan−1 then has an (N − (n − 1))/(N − (n − 2))
probability of ending up in some Ean , with an 6= an−1, · · · , a2, a1. Finally, Lan has a
1/(N − (n− 1)) probability of ending up in Ean+1 = Ea1 . The probability that La1

belongs to a loop of length n is therefore equal to
(

N − 1
N

) (
N − 2
N − 1

)
· · ·

(
N − (n− 1)
N − (n− 2)

) (
1

N − (n− 1)

)
=

1
N

. (5)

Given that a loop of length n is formed, which happens with probability 1/N ,
the probability that all the N − n other letters end up in the wrong envelopes is
simply PN−n. We therefore arrive at the relation,

PN =
1
N

(
PN−2 + PN−3 + · · ·+ P1 + P0

)
. (6)

There is no PN−1 term in this equation, because a loop of length 1 would mean that
La1 went into Ea1 . Note that P1 = 0, and that P0 = 1 here.

Multiplying eq. (6) through by N , and then subtracting the analogous equation
for PN−1 (after multiplying through by N − 1), gives

NPN − (N − 1)PN−1 = PN−2

=⇒ PN − PN−1 = − 1
N

(PN−1 − PN−2) . (7)

This is the same as eq. (2), with N + 1 replaced by N . The solution proceeds as
above.
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Third Solution: We will find PN by counting the number of cases that have no
letter in the correct envelope, and then dividing this by the total number of possible
arrangements, N ! .

We may count these cases in the following manner. There are N ! total com-
binations. To count the number that have no letter in the correct envelope, we
must subtract from N ! the number of combinations with, for example, (at least)
L1 in the correct envelope; there are (N − 1)! of these combinations. Likewise for
the situations where another letter is in the correct envelope. So there seem to
be N ! − N(N − 1)! combinations with no letter in the correct envelope. However,
we have double-counted some of the cases. For example, a combination which has
(at least) L1 and L2 in the correct envelopes has been subtracted twice; there are
(N − 2)! of these. Likewise for all the other pairs of letters. So we must add on(N

2

)
(N − 2)! combinations. But now a combination which has (at least) L1, L2, and

L3 in the correct envelopes has not been counted at all (because we have subtracted
it off three times, and then added it on three times); there are (N − 3)! of these.
Likewise for the other triplets. So we must subtract off

(N
3

)
(N − 3)! combinations.

Now, however, the combinations with (at least) L1, L2, L3, and L4 in the correct
envelopes have been counted −(4

1

)
+

(4
2

) − (4
3

)
= −2 times. Likewise for the other

quadruplets. So we must add on
(N

4

)
(N − 4)! combinations.

In general, if we have done this procedure up to (k−1)-tuplets, then a combina-
tion having (at least) k letters in the correct envelopes has been counted T times,
where

T = −
(

k

1

)
+

(
k

2

)
− · · ·+ (−1)k−1

(
k

k − 1

)
. (8)

However, the binomial expansion gives

0 = (1− 1)k

= 1−
(

k

1

)
+

(
k

2

)
+ · · ·+ (−1)k−1

(
k

k − 1

)
+ (−1)k

= 1 + T + (−1)k. (9)

Therefore, T = −2 for even k, and T = 0 for odd k. So we have either undercounted
by one, or overcounted by one. Hence, the total number of combinations having no
letter in the correct envelope is

N !−
(

N

1

)
(N − 1)! +

(
N

2

)
(N − 2)! + · · · =

N∑

k=0

(−1)kN !
k!

. (10)

To obtain the probability, PN , that no letter is in the correct envelope, we must
divide this result by N ! . Therefore,

PN =
N∑

k=0

(−1)k

k!
. (11)
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Remarks:

1. What is the probability (call it P l
N ) that exactly l out of the N letters end up in the

correct envelopes? (With this notation, P 0
N equals the PN from above.) We can find

P l
N as follows.

The probability that a given set of l letters goes into the correct envelopes is 1/
(
N(N−

1)(N −2) · · · (N − l +1)
)
. The probability that the remaining N − l letters all go into

the wrong envelopes is P 0
N−l. This situation can happen in

(
N
l

)
ways. Therefore,

P l
N =

(
N
l

)

N(N − 1) · · · (N − l + 1)
P 0

N−l

=
1
l!

PN−l. (12)

Hence, using eq. (3),

P l
N =

1
l!

N−l∑

k=0

(−1)k

k!
. (13)

For large N , we have P l
N ≈ 1/(l!e). The fact that this falls off so rapidly with l means

that we are essentially guaranteed of having just a few letters in the correct envelopes.
For example, we find (for large N) that the probability of having four or fewer letters
in the correct envelopes is about 99.7%.

2. It is interesting to note that the equality, P l
N = 1

l!PN−l, may directly yield the large-N
result, PN ≈ 1/e, without having to go through all the work of the original problem.
To see this, note that

1 =
N∑

l=0

P l
N =

N∑

l=0

1
l!

PN−l. (14)

Since the terms with small l values dominate this sum, we may (for large N) replace
the PN−l values with limM→∞ PM . Hence,

1 ≈
N∑

l=0

1
l!

(
lim

M→∞
PM

)
. (15)

Therefore,

lim
M→∞

PM ≈
(

N∑

l=0

1
l!

)−1

≈ 1
e

. (16)

3. Let’s check that the P l
N given by eq. (13) do indeed satisfy

∑N
l=0 P l

N = 1. This may
be done as follows:

N∑

l=0

P l
N =

N∑

l=0

N−l∑

k=0

1
l!

(−1)k

k!

=
N∑

l=0

N∑

s=l

1
l!

(−1)s−l

(s− l)!
(with s = l + k)

=
N∑

s=0

s∑

l=0

1
l!

(−1)s−l

(s− l)!
(rewriting the limits in the s, l plane)
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=
N∑

s=0

1
s!

s∑

l=0

s!
l!(s− l)!

(−1)s−l

=
N∑

s=0

1
s!

(1− 1)s

= 1 (only s = 0 contributes). (17)

4. What is the average number, A, of letters in the correct envelopes? If the setup of
the problem is repeated many times, then the average number of times a given letter
ends up in the correct envelope is 1/N . Since there are N letters, the average total
number of correct envelopes is N(1/N) = 1.
You can check that the expression for P l

N in eq. (13) leads to A = 1. For finite N ,
the sum gets a little messy, but the result in eq. (17) will help simplify things a bit if
you want to work it out.
For large N , where we have P l

N ≈ 1/(l!e), the sum is easy, and we obtain

A =
N∑

l=0

lP l
N ≈ 1

e

N∑

l=1

1
(l − 1)!

≈ 1. (18)
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