
Solution

Week 19 (1/20/03)

Block and bouncing ball

(a) Consider one of the collisions. Let it occur at a distance ` from the wall, and
let v and V be the speeds of the ball and block, respectively, after the collision.
We claim that the quantity `(v − V ) is invariant. That is, it is the same for
each collision. This can be seen as follows.

The time to the next collision is given by V t + vt = 2` (because the sum of
the distances traveled by the two objects is 2`). Therefore, the next collision
occurs at a distance `′ from the wall, where

`′ = `− V t = `− 2`V

V + v
=

`(v − V )
v + V

. (1)

Therefore,
`′(v + V ) = `(v − V ). (2)

We now make use of the fact that in an elastic collision, the relative speed
before the collision equals the relative speed after the collision. (This is most
easily seen by working in the center of mass frame, where this scenario clearly
satisfies conservation of E and p.) Therefore, if v′ and V ′ are the speeds after
the next collision, then

v + V = v′ − V ′. (3)

Using this in eq. (2) gives

`′(v′ − V ′) = `(v − V ), (4)

as we wanted to show.

What is the value of this invariant? After the first collision, the block continues
to move at speed V0, up to corrections of order m/M . And the ball acquires a
speed of 2V0, up to corrections of order m/M . (This can be seen by working
in the frame of the heavy block, or equivalently by using eq. (3) with V ′ ≈
V = V0 and v = 0.) Therefore, the invariant `(v − V ) is essentially equal to
L(2V0 − V0) = LV0.

Let Lmin be the closest distance to the wall. When the block reaches this
closest point, its speed is (essentially) zero. Hence, all of the initial kinetic
energy of the block now belongs to the ball. Therefore, v = V0

√
M/m, and

our invariant tells us that LV0 = Lmin(V0

√
M/m− 0). Thus,

Lmin = L

√
m

M
. (5)

(b) (This solution is due to Slava Zhukov)

With the same notation as in part (a), conservation of momentum in a given
collision gives

MV −mv = MV ′ + mv′. (6)
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This equation, along with eq. (3),1 allows us to solve for V ′ and v′ in terms
of V and v. The result, in matrix form, is

(
V ′

v′

)
=

(
M−m
M+m

−2m
M+m

2M
M+m

M−m
M+m

) (
V
v

)
. (7)

The eigenvectors and eigenvalues of this transformation are

A1 =

(
1

−i
√

M
m

)
, λ1 =

(M −m) + 2i
√

Mm

M + m
≡ eiθ,

A2 =

(
1

i
√

M
m

)
, λ2 =

(M −m)− 2i
√

Mm

M + m
≡ e−iθ, (8)

where

θ ≡ arctan

(
2
√

Mm

M −m

)
≈ 2

√
m

M
. (9)

The initial conditions are
(

V
v

)
=

(
V0

0

)
=

V0

2
(A1 + A2). (10)

Therefore, the speeds after the nth bounce are given by
(

Vn

vn

)
=

V0

2
(λn

1A1 + λn
2A2)

=
V0

2

(
einθ

(
1

−i
√

M
m

)
+ e−inθ

(
1

i
√

M
m

))

= V0

(
cosnθ√
M
m sinnθ

)
. (11)

Let the block reach its closest approach to the wall at the Nth bounce. Then
VN = 0, and so eq. (11) tells us that Nθ = π/2. Using the definition of θ from
eq. (9), we have

N =
π/2

arctan 2
√

Mm
M−m

≈ π

4

√
M

m
. (12)

Remark: This solution is exact, up to the second line in eq. (12), where we finally
use M À m. We can use the first line of eq. (12) to determine the relation between
m and M for which the Nth bounce leaves the block exactly at rest at its closest

1Alternatively, you could use conservation of energy, but this is a quadratic statement in the
velocities, which makes things messy. Conservation of energy is built into the linear eq. (3).
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approach to the wall. For this to happen, we need the N in eq. (12) to be an integer.
Letting m/M ≡ r, we can rewrite eq. (12) as

2
√

r

1− r
= tan

π

2N
≡

√
1− cos β

1 + cos β
, (13)

where we have used the tan half-angle formula, with β ≡ π/N . Squaring both sides
and solving the resulting quadratic equation for r gives

r =
3 + cos β − 2

√
2 + 2 cos β

1− cos β
. (14)

If we want the block to come to rest after N = 1 bounce, then β = π gives r = 1,
which is correct. If we want N = 2, then β = π/2 gives r = 3 − 2

√
2 ≈ 0.172. If we

want N = 3, then β = π/3 gives r = 7− 4
√

3 ≈ 0.072. For general N , eq. (14) must
be computed numerically. For large N , the second line in eq. (12) shows that r goes
like 1/N2. More precisely, r ≈ π2/(16N2).
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