
Solution

Week 25 (3/3/03)

Maximum deflection angle

First Solution: Although it is possible to solve this problem by working in the lab
frame (see the second solution below), it is much easier to make use of the center-
of-mass frame. Let M have initial speed V in the lab frame. Then the CM moves
with speed

VCM =
MV

M + m
, (1)

as shown.
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The speeds of the masses in the CM frame are therefore equal to

U = V − VCM =
mV

M + m
, and u = | − VCM| = MV

M + m
, (2)

as shown.
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In the CM frame, the collision is simple. The particles keep the same speeds, but
simply change their directions (while still moving in opposite directions), as shown.
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The angle θ is free to have any value. This scenario clearly satisfies conservation of
energy and momentum; therefore, it is what happens.

The important point to note is that since θ can have any value, the tip of the
U velocity vector can be located anywhere on a circle of radius U . If we then shift
back to the lab frame, we see that the final velocity of M with respect to the lab
frame, Vlab, is obtained by adding VCM to the vector U (which can point anywhere
on the dotted circle below). A few possibilities for Vlab are shown.
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The largest angle of deflection is obtained when Vlab is tangent to the dotted circle,
in which case we have the following situation.
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The maximum angle of deflection, φ, is therefore given by

sinφ =
U

VCM
=

mV
M+m
MV

M+m

=
m

M
. (3)

Second Solution: Let V ′ and v′ be the final speeds, and let φ and γ be the
scattering angles of M and m, respectively, in the lab frame. Then conservation of
px, py, and E give

MV = MV ′ cosφ + mv′ cos γ, (4)
0 = MV ′ sinφ−mv′ sin γ, (5)

1
2
MV 2 =

1
2
MV ′2 +

1
2
mv′2. (6)

Putting the φ terms on the left-hand sides of eqs. (4) and (5), and then squaring
and adding these equations, gives

M2(V 2 + V ′2 − 2V V ′ cosφ) = m2v′2. (7)

Equating this expression for m2v′2 with the one obtained by multiplying eq. (6)
through by m gives

M(V 2 + V ′2 − 2V V ′ cosφ) = m(V 2 − V ′2)
=⇒ (M + m)V ′2 − (2MV cosφ)V ′ + (M −m)V 2 = 0. (8)
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A solution to this quadratic equation in V ′ exists if and only if the discriminant is
non-negative. Therefore, we must have

(2MV cosφ)2 − 4(M + m)(M −m)V 2 ≥ 0
=⇒ m2 ≥ M2(1− cos2 φ)
=⇒ m2 ≥ M2 sin2 φ

=⇒ m

M
≥ sinφ. (9)

Remarks: If M < m, then eq. (9) says that any value of φ is possible. In particular, it
it possible for M to bounce directly backwards. In the language of the first solution above,
if M < m then VCM < U , so the dotted circle passes to the left of the left vertex of the
triangle. This means that φ can take on any value.

The method of the first solution provides an easy way to demonstrate the result that
if the two masses are equal, then they always scatter at a relative angle of 90◦ (a familiar
result in billiards). If M = m, then

u = U = VCM =
MV

M + M
=

V

2
. (10)

Therefore, the u and U vectors in the figure below form a diameter of the dotted circle,
which means that the final velocities of M and m in the lab frame are perpendicular.
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