Solution

Week 28 (3/24/03)

Rectangle in a circle

In the figure below, let the incenters of triangles $A D B$ and $A D C$ be X and Y, respectively.

Angle $\angle X A Y$ can be written as

$$
\begin{aligned}
\angle X A Y & =\angle X A D-\angle Y A D \\
& =\frac{1}{2} \angle B A D-\frac{1}{2} \angle C A D \\
& =\frac{1}{2} \angle B A C \\
& =\frac{1}{4}(\overparen{B C}) .
\end{aligned}
$$

A similar argument (with A, B, X interchanged with D, C, Y) shows that angle $\angle Y D X$ also equals $(1 / 4)(\overparen{B C})$. This equality of angles $\angle X A Y$ and $\angle Y D X$ implies that triangles $X A P$ and $Y D P$ are similar. This in turn implies that triangles $P X Y$ and $P A D$ are similar. Therefore, $\angle P X Y=\angle P A D$. These results may be summarized in the following figure.

We may now repeat the above procedure with the incenters $(Y$ and $Z)$ of triangles $D C A$ and $D C B$. The result is two more pairs of equal angles, as shown.

The four angles shown have the values,

$$
\begin{aligned}
\alpha & =(1 / 4)(\overparen{B C}), \\
\beta & =(1 / 2) \angle C A D=(1 / 4)(\overparen{C D}) \\
\gamma & =(1 / 4)(\overparen{A B}), \\
\delta & =(1 / 2) \angle A C D=(1 / 4)(\overparen{A D}) .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\alpha+\beta+\gamma+\delta=\frac{1}{4}(\overparen{B C}+\overparen{C D}+\overparen{A B}+\overparen{A D})=\frac{1}{4}\left(360^{\circ}\right)=90^{\circ} . \tag{1}
\end{equation*}
$$

We now note that angle $\angle X Y Z$ is given by

$$
\begin{aligned}
\angle X Y Z & =360^{\circ}-\angle X Y D-\angle Z Y D \\
& =360^{\circ}-\left(180^{\circ}-\alpha-\beta\right)-\left(180^{\circ}-\gamma-\delta\right) \\
& =\alpha+\beta+\gamma+\delta \\
& =90^{\circ} .
\end{aligned}
$$

The same reasoning holds for the other three vertices of the incenter quadrilateral. Therefore, this quadrilateral is a rectangle, as we wanted to show.

