Solution

Week 29 (3/31/03)

Balls in a semicircle

(a) Let $\mu \equiv M / N$ be the mass of each ball in the semicircle. We need the deflection angle in each collision to be $\theta=\pi / N$. However, if the ratio μ / m is too small, then this angle of deflection is not possible.
From Problem of the Week $\# 25$, the maximal angle of deflection in each collision is given by $\sin \theta=\mu / m$. (We'll just invoke this result here.) Since we want $\theta=\pi / N$ here, this $\sin \theta \leq \mu / m$ condition becomes (using $\sin \theta \approx \theta$, for the small angle θ)

$$
\begin{equation*}
\theta \leq \frac{\mu}{m} \quad \Longrightarrow \quad \frac{\pi}{N} \leq \frac{M / N}{m} \quad \Longrightarrow \quad \pi \leq \frac{M}{m} \tag{1}
\end{equation*}
$$

(b) Referring back to the solution to Problem $\# 25$, we see that m's speed after the first bounce is obtained from the following figure.

Looking at the right triangle, we see that the speed after the bounce is

$$
\begin{equation*}
V_{f}=V \frac{\sqrt{m^{2}-\mu^{2}}}{m+\mu} \tag{2}
\end{equation*}
$$

To first order in the small quantity μ / m, this equals

$$
\begin{equation*}
V_{f} \approx \frac{m V}{m+\mu} \approx V\left(1-\frac{\mu}{m}\right) \tag{3}
\end{equation*}
$$

The same reasoning holds for each successive bounce, so the speed decreases by a factor of $(1-\mu / m)$ after each bounce. In the minimum M / m case found in part (a), we have

$$
\begin{equation*}
\frac{\mu}{m}=\frac{M / N}{m}=\frac{M / m}{N}=\frac{\pi}{N} \tag{4}
\end{equation*}
$$

Therefore, the ratio of m 's final speed to initial speed equals

$$
\begin{equation*}
\frac{V_{\text {final }}}{V_{\text {initial }}} \approx\left(1-\frac{\pi}{N}\right)^{N} \approx e^{-\pi} \tag{5}
\end{equation*}
$$

That's a nice result, if there ever was one! Since $e^{-\pi}$ is roughly equal to $1 / 23$, only about 4% of the initial speed remains.

