Solution

Week 30 (4/7/03)

Difference of Powers

A value of 26 is obtainable with $m=n=1$. By considering the remainder when $33^{m}-7^{n}$ is divided by certain numbers, we will show that no value smaller than 26 is possible. We will use the "mod" notation for convenience, where $a \equiv b(\bmod c)$ means that a leaves a remainder of b when divided by c.

- Consider divisions by 16 . We have $33 \equiv 1(\bmod 16)$, and $7^{n} \equiv 7$ or $1(\bmod$ 16) because $7^{2} \equiv 1(\bmod 16)$. Therefore, $33^{m}-7^{n} \equiv 0$ or $10(\bmod 16)$. So the only possible answers to the problem are $0,10,16$, and 26 .
- Now consider divisions by 3 . We have $33 \equiv 0(\bmod 3)$, and $7 \equiv 1(\bmod 3)$. Therefore, $33^{m}-7^{n} \equiv 2(\bmod 3)$. This leaves 26 as the only possibility.

