
Solution

Week 33 (4/28/03)

Ball rolling in a cone

It turns out that the ball can move arbitrarily fast around the cone. As we will see,
the plane of the contact circle (represented by the chord in the figure below) will
need to be tilted downward from the contact point, so that the angular momentum
has a rightward horizontal component, as shown.
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Let’s first look at F = ma along the plane. Let Ω be the angular frequency of
the ball’s motion around the cone. Then the ball’s horizontal acceleration is m`Ω2

to the left. So F = ma along the plane gives (where Ff is the friction force)

mg sin θ + Ff = m`Ω2 cos θ. (1)

Now let’s look at τ = dL/dt. To get a handle on how fast the ball is spinning,
consider what the setup looks like in the rotating frame in which the center of the
ball is stationary (so the ball just spins in place as the cone spins around). Since
there is no slipping, the contact points on the ball and the cone must have the same
speed. That is,

ωr = Ω` =⇒ ω =
Ω`

r
, (2)

where ω is the angular speed of the ball in the rotating frame, and r is the radius of
the contact circle on the ball.1 The angular momentum of the ball in the lab frame
equals L = Iω (at least for the purposes here2), and it points in the direction shown
above.

1If the center of the ball travels in a circle of radius `, then the ` here should actually be replaced
with ` + R sin θ, which is the radius of the contact circle on the cone. But since we’re assuming
that R ¿ `, we can ignore the R sin θ part.

2This L = Iω result isn’t quite correct, because the angular velocity of the ball in the lab frame
equals the angular velocity in the rotating frame (which tilts downwards with the ω magnitude we
just found) plus the angular velocity of the rotating frame with respect to the lab frame (which
points straight up with magnitude Ω). This second part of the angular velocity simply yields an
additional vertical component of the angular momentum. But the vertical component of L doesn’t
change with time as the ball moves around the cone. It is therefore irrelevant, since we will be
concerned only with dL/dt in what follows.
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The L vector precesses around a cone in L-space with the same frequency, Ω, as
the ball moves around the cone. Only the horizontal component of L changes, and
it traces out a circle of radius Lhor = L sinβ, at frequency Ω. Therefore,

∣∣∣dL
dt

∣∣∣ = LhorΩ = (Iω sinβ)Ω =
IΩ2` sinβ

r
, (3)

and the direction of dL/dt is into the page.
The torque on the ball (relative to its center) is due to the friction force, Ff .

Hence, |τ | = FfR, and its direction is into the page. Therefore, τ = dL/dt gives
(with I = ηmR2, where η = 2/5 in this problem)

FfR =
IΩ2` sinβ

r

=⇒ Ff =
ηmRΩ2` sinβ

r
. (4)

Using this Ff in eq. (1) gives

mg sin θ +
ηmRΩ2` sinβ

r
= m`Ω2 cos θ. (5)

Solving for Ω gives

Ω2 =
g sin θ

`
(
cos θ − ηR sin β

r

) . (6)

We see that it is possible for the ball to move around the cone infinitely fast if

cos θ =
η sinβ

x
, (7)

where x ≡ r/R. But from the above figure, we see that β is given by

β = θ − sin−1(r/R). (8)

Therefore, eq. (7) gives

cos θ =
η

x
sin(θ − sin−1 x)

=⇒ x cos θ = η sin θ cos(sin−1 x)− η cos θ sin(sin−1 x)

=⇒ x cos θ = η sin θ
√

1− x2 − η cos θx

=⇒ x(1 + η) cos θ = η sin θ
√

1− x2. (9)

Squaring and solving for x2 gives

x2 =
η2 sin2 θ

(1 + η)2 cos2 θ + η2 sin2 θ
. (10)

In the problem at hand, we have η = 2/5, so

r

R
≡ x =

√
4 sin2 θ

49 cos2 θ + 4 sin2 θ
. (11)
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Remarks:

1. What value of θ allows largest the tilt angle of the contact circle (that is, the largest
β)? From eq. (7), we see that maximizing β is equivalent to maximizing x cos θ, or
equivalently x2 cos2 θ. Using the value of x2 in eq. (10), we see that we want to
maximize

x2 cos2 θ =
η2 sin2 θ cos2 θ

(1 + η)2 cos2 θ + η2 sin2 θ
. (12)

Taking the derivative with respect to θ and going through a bit of algebra, we find
that the maximum is achieved when

sin θ =
√

1 + η

1 + 2η
=

√
7
9

=⇒ θ = 61.9◦. (13)

You can then show that

sin βmax =
1

1 + 2η
=

5
9

=⇒ βmax = 33.7◦. (14)

2. Let’s consider three special cases for the contact circle, namely, when it is a horizontal
circle, a great circle, or a vertical circle.

(a) Horizontal circle: In this case, we have β = 0, so eq. (6) gives

Ω2 =
g tan θ

`
. (15)

In this case, L points vertically, which means that dL/dt is zero, which means
that the torque is zero, which means that the friction force is zero. Therefore,
the ball moves around the cone with the same speed as a particle sliding without
friction. (You can show that such a particle does indeed have Ω2 = g tan θ/`.)
The horizontal contact-point circle (β = 0) is the cutoff case between the sphere
moving faster or slower than a frictionless particle.

(b) Great circle: In this case, we have r = R and β = −(90◦ − θ). Hence, sin β =
− cos θ, and eq. (6) gives

Ω2 =
g tan θ

`(1 + η)
. (16)

This reduces to the frictionless-particle case when η = 0, as it should.

(c) Vertical circle: In this case, we have r = R cos θ and β = −90◦, so eq. (6) gives

Ω2 =
g tan θ

`
(
1 + η

cos2 θ

) . (17)

Again, this reduces to the frictionless-particle case when η = 0, as it should.
But for θ → 90◦, Ω goes to zero, whereas in the other two cases above, Ω goes
to ∞.
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