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Solution
Week 36 (5/19/03)

Monochromatic Triangle

Let us try to avoid forming a monochromatic triangle, a task that we will show
is impossible. Consider one point and the sixteen lines drawn from it to the
other sixteen points. From the pigeonhole principle (if you have n pigeons and
n — 1 pigeonholes, then at least two pigeons must go in one pigeonhole), we
see that at least six of these lines must be of the same color. Let this color be
red.

Now consider the six points at the ends of these red lines. Look at the lines
going from one of these points to the other five. In order to not form a red
triangle, each of these five lines must be either green or blue. Hence (by the
pigeonhole principle) at least three of them must be of the same color. Let
this color be green.

Finally, consider the three points at the ends of the three green lines. If any
one of the three lines connecting them is red, a red triangle is formed. And if
any one of the three lines connecting them is green, a green triangle is formed.
Therefore, they must all be blue, and a blue triangle is formed.

Consider the problem for the case of n = 4, in order to get an idea of how the
solution generalizes. We claim that 66 points will necessitate a monochromatic
triangle. As in the case of n = 3, isolate one point and paint all the lines from it
to the other points. Since we have 65 other points and 4 colors, the pigeonhole
principle requires that at least 17 of these lines be of the same color. In order
to not have a monochromatic triangle, the lines joining the endpoints of these
17 lines must use only the remaining three colors, and the problem is reduced
to the case of n = 3.

Generalizing this reasoning yields the following result:

Claim: Ifn colors and P, points necessitate a monochromatic triangle, then
n+ 1 colors and
Poii=Mn+1)(P,—1)+2 (1)

points also necessitate a monochromatic triangle.

Proof: Isolate one point, and paint each of the (n + 1)(P, — 1) + 1 lines to
the other points one of n+1 colors. From the pigeonhole principle, at least P,
of these lines must be the same color. In order to not have a monochromatic
triangle, the points at the ends of these P, lines must be joined by the n other
colors. But by hypothesis, there must then be a monochromatic triangle. B

If we use the above recursion relation in itself (that is, if we write the P, in
eq. (1) in terms of P,_1, and then write P,_; in terms of P,_o, and so on),
the pattern becomes clear. Using the initial condition P, = 3, we arrive at the



following expression for P:
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Pn_n.(1+1!+2!+ +n!>+1, (2)

as you can easily verify. The sum in the parentheses is smaller than e by a

margin that is less than 1/n!. Therefore, P, does indeed equal the smallest
integer greater than nle.

REMARK: For n = 1,2,3, the numbers [nle] (which equal 3,6,17, respectively) are
the smallest numbers which necessitate a monochromatic triangle. (For n = 1, two
points don’t even form a triangle. And for n = 2, you can easily construct a diagram
that doesn’t contain a monochromatic triangle. For n = 3, things are much more
difficult, but in 1968 Kalbfleisch and Stanton showed that 16 points do not necessitate
a monochromatic triangle.) For n > 4, the problem of finding the smallest number of
points that necessitate a monochromatic triangle is unsolved, I believe.



