
Solution

Week 37 (5/26/03)

Bouncing down a plane

Let us ignore the tilt of the plane for a moment and determine how the ωf and vf

after a bounce are related to the ωi and vi before the bounce (where v denotes the
velocity component parallel to the plane). Let the positive directions of velocity
and force be to the right along the plane, and let the positive direction of angular
velocity be counterclockwise. If we integrate the force and torque over the small
time of a bounce, we obtain

F =
dP

dt
=⇒

∫
F dt = ∆P,

τ =
dL

dt
=⇒

∫
τ dt = ∆L. (1)

But τ = RF . And since R is constant, we have

∆L =
∫

RF dt = R

∫
F dt = R∆P. (2)

Therefore,
I(ωf − ωi) = Rm(vf − vi). (3)

But conservation of energy gives
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2
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2
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i

=⇒ I(ω2
f − ω2

i ) = m(v2
i − v2

f ). (4)

Dividing this equation by eq. (3) gives1

R(ωf + ωi) = −(vf + vi). (5)

We can now combine this equation with eq. (3), which can be rewritten (using
I = (2/5)mR2) as

2
5
R(ωf − ωi) = vf − vi. (6)

Given vi and ωi, the previous two equations are two linear equations in the two
unknowns, vf and ωf . Solving for vf and ωf , and then writing the result in matrix
notation, gives

(
vf

Rωf

)
=

1
7

(
3 −4
−10 −3

) (
vi

Rωi

)
≡ A

(
vi

Rωi

)
. (7)

1We have divided out the trivial ωf = ωi and vf = vi solution, which corresponds to slipping
motion on a frictionless plane. The nontrivial solution we will find shortly is the non-slipping one.
Basically, to conserve energy, there must be no work done by friction. But since work is force
times distance, this means that either the plane is frictionless, or that there is no relative motion
between ball’s contact point and the plane. Since we are given that the plane has friction, the latter
(non-slipping) case must be the one we are concerned with.
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Note that

A2 =
1
49

(
49 0
0 49

)
= I. (8)

Now let us consider the effects of the tilted plane. Since the ball’s speed perpen-
dicular to the plane is unchanged by each bounce, the ball spends the same amount of
time in the air between any two successive bounces. This time equals T = 2V/g cos θ,
because the component of gravity perpendicular to the plane is g cos θ. During this
time, the speed along the plane increases by (g sin θ)T = 2V tan θ ≡ V0.

Let Q denote the (v, Rω) vector at a given time (where v denotes the veloc-
ity component parallel to the plane). The ball is initially projected with Q = 0.
Therefore, right before the first bounce, we have Qbefore

1 = (V0, 0) ≡ V0. (We have
used the fact that ω doesn’t change while the ball is in the air.) Right after the
first bounce, we have Qafter

1 = AV0. We then have Qbefore
2 = AV0 + V0, and so

Qafter
2 = A(AV0 + V0). Continuing in this manner, we see that

Qbefore
n = (An−1 + · · ·+A+ I)V0, and
Qafter

n = (An + · · ·+A2 +A)V0. (9)

However, A2 = I, so all the even powers of A equal I. The value of Q after the nth
bounce is therefore given by

n even =⇒ Qafter
n =

n

2
(A+ I)V0.

n odd =⇒ Qafter
n =

1
2

(
(n + 1)A+ (n− 1)I

)
V0. (10)

Using the value of A defined in eq. (7), we find

n even =⇒
(

vn

Rωn

)
=

n

7

(
5 −2
−5 2

) (
V0

0

)
.

n odd =⇒
(

vn

Rωn

)
=

1
7

(
5n− 2 −2n− 2
−5n− 5 2n− 5

) (
V0

0

)
. (11)

Therefore, the speed along the plane after the nth bounce equals (using V0 ≡
2V tan θ)

vn =
10nV tan θ

7
(n even), and vn =

(10n− 4)V tan θ

7
(n odd). (12)

Remark: Note that after an even number of bounces, eq. (11) gives v = −Rω. This is
the “rolling” condition. That is, the angular speed exactly matches up with the translation
speed, so v and ω are unaffected by the bounce. (The vector (1,−1) is an eigenvector of
A.) At the instant that an even-n bounce occurs, the v and ω are the same as they would
be for a ball that simply rolls down the plane. At the instant after an odd-n bounce, the v
is smaller than it would be for the rolling ball, but the ω is larger. (Right before an odd-n
bounce, the v is larger but the ω is smaller.)
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