Solution

Week 38 (6/2/03)

Sum over 1

(a) First Solution: We will use the following fact: Given n random numbers between 0 and 1 , the probability $P_{n}(1)$ that their sum does not exceed 1 equals $1 / n!{ }^{1}$ To prove this, let us prove a slightly stronger result:

Theorem: Given n random numbers between 0 and 1, the probability $P_{n}(s)$ that their sum does not exceed s equals $s^{n} / n!$ (for all $s \leq 1$).

Proof: Assume inductively that the result holds for a given n. (It clearly holds for all $s \leq 1$ when $n=1$.) What is the probability that $n+1$ numbers sum to no more than t (with $t \leq 1$)? Let the $(n+1)$ st number have the value x. Then the probability $P_{n+1}(t)$ that all $n+1$ numbers sum to no more than t equals the probability $P_{n}(t-x)$ that the first n numbers sum to no more than $t-x$. But $P_{n}(t-x)=(t-x)^{n} / n$!. Integrating this probability over all x from 0 to t gives

$$
\begin{equation*}
P_{n+1}(t)=\int_{0}^{t} \frac{(t-x)^{n}}{n!} d x=-\left.\frac{(t-x)^{n+1}}{(n+1)!}\right|_{0} ^{t}=\frac{t^{n+1}}{(n+1)!} . \tag{1}
\end{equation*}
$$

We see that if the theorem holds for n, then it also holds for $n+1$. Therefore, since the theorem holds for all $s \leq 1$ when $n=1$, it holds for all $s \leq 1$ for any n.
We are concerned with the special case $s=1$, for which $P_{n}(1)=1 / n!$.
The probability that it takes exactly n numbers for the sum to exceed 1 equals $1 /(n-1)!-1 / n$!. This is true because the first $n-1$ numbers must sum to less than 1 , and the nth number must push the sum over 1 , so we must subtract off the probability that is does not.
The expected number of numbers, N, to achieve a sum greater than 1 , is therefore

$$
\begin{align*}
N & =\sum_{2}^{\infty} n\left(\frac{1}{(n-1)!}-\frac{1}{n!}\right) \\
& =\sum_{2}^{\infty} \frac{1}{(n-2)!} \\
& =e^{.} \tag{2}
\end{align*}
$$

Could it really have been anything else?
Second Solution: We will use the result, $P_{n}(s)=s^{n} / n$!, from the first solution. Let $F_{n}(s) d s$ be the probability that the sum of n numbers is between

[^0]s and $s+d s$. Then $F_{n}(s)$ is simply the derivative of $P_{n}(s)$, with respect to s. Therefore, $F_{n}(s)=s^{n-1} /(n-1)!$.
In order for it to take exactly m numbers for the sum to exceed 1 , two things must happen: (1) the sum of the first $m-1$ numbers must equal a number, s, less than 1 ; this occurs with probability density $s^{m-2} /(m-2)!$. And (2) the m th number must push the sum over 1 , that is, the m th number must be between $1-s$ and 1 ; this occurs with probability s.
The probability that it takes exactly m numbers for the sum to exceed 1 is therefore $\int_{0}^{1} s\left(s^{m-2} /(m-2)!\right) d s$. The expected number of numbers, N, to achieve a sum greater than 1 , therefore equals
\[

$$
\begin{align*}
N & =\sum_{2}^{\infty} m \int_{0}^{1} \frac{s^{m-1}}{(m-2)!} d s \\
& =\sum_{2}^{\infty} m \frac{1}{m(m-2)!} \\
& =e . \tag{3}
\end{align*}
$$
\]

(b) First Solution: After n numbers have been added, the probability that their sum is between s and $s+d s$ is, from above, $F_{n}(s)=s^{n-1} /(n-1)$! (for $s \leq 1$). There is a probability of s that the $(n+1)$ st number pushes the sum over 1 . If this happens, then (since this last number must be between $1-s$ and 1 , and is evenly distributed) the average result will be equal to $s+(1-s / 2)=1+s / 2$. The expected sum therefore equals

$$
\begin{align*}
S & =\sum_{1}^{\infty}\left(\int_{0}^{1}\left(1+\frac{s}{2}\right) s \frac{s^{n-1}}{(n-1)!} d s\right) \\
& =\sum_{1}^{\infty} \frac{3 n^{2}+5 n}{2(n+2)!} \\
& =\sum_{1}^{\infty} \frac{3(n+2)(n+1)-4(n+2)+2}{2(n+2)!} \\
& =\sum_{1}^{\infty}\left(\frac{3}{2 n!}-\frac{2}{(n+1)!}+\frac{1}{(n+2)!}\right) \\
& =\frac{3}{2}(e-1)-2(e-2)+(e-5 / 2) \\
& =\frac{e}{2} . \tag{4}
\end{align*}
$$

Second Solution: Each of the random numbers has an average value of $1 / 2$. Therefore, since it takes (on average) e numbers for the sum to exceed 1 , the average value of the sum will be $e / 2$.
This reasoning probably strikes you as being either completely obvious or completely mysterious. In the case of the latter, imagine playing a large number of games in succession, writing down each of the random numbers in one long sequence. (You can note the end of each game by, say, putting a mark after
the final number, but this is not necessary.) If you play N games (with N very large), then the result from part (a) shows that there will be approximately $N e$ numbers listed in the sequence. Each number is a random number between 0 and 1 , so the average value is $1 / 2$. The sum of all of the numbers in the sequence is therefore approximately $N e / 2$. Hence, the average total per game is $e / 2$.

[^0]: ${ }^{1}$ The number $1 / n!$ is the volume of the region in n dimensions bounded by the coordinate planes and the hyperplane $x_{1}+x_{2}+\cdots+x_{n}=1$. For example, in two dimensions we have a triangle with area $1 / 2$; in three dimensions we have a pyramid with volume $1 / 6$; etc.

