
Solution

Week 4 (10/7/02)

Passing the spaghetti

(a) For the case of n = 3, it is obvious that the two people not at the head of the
table have equal 1/2 chances of being the last served (BTLS).

For the case of n = 4, label the diners as A,B,C,D (with A being the head),
and consider D’s probability of BTLS. The various paths of spaghetti that
allow D to be the last served are:

ABC..., ABABC..., ABABABC..., etc. (1)

The sum of the probabilities of these is
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. (2)

By symmetry, B also has a 1/3 chance of BLTS, and then that leaves a 1/3
chance for C. Hence, B, C, and D all have equal 1/3 chances of BLTS.

The probabilities for n = 5 are a bit tedious to calculate in this same manner,
so at this point we will (for lack of a better option) make the following guess:

Claim: For arbitrary n, all diners not at the head of the table have equal
1/(n− 1) chances of being the last served (BTLS).

This seems a bit counterintuitive (because you might think that the diners
further from the head have a greater chance of BTLS), but it is in fact correct.

Proof: Two things must happen to a given diner for BTLS:

(1) The plate must approach the given diner from the right or left and reach
the person next to that diner.

(2) The plate must then reverse its direction and make its way (in whatever
manner) all the way around the table until it reaches the person on the
other side of the given diner.

For any of the (non-head) diners, the probability that the first of these condi-
tions will be satisfied is 1. This condition will therefore not differentiate the
probabilities of BTLS.

Given that (1) has happened, there is some definite probability of (2) hap-
pening, independent of where the diner is located. This is true because the
probability of traveling all the way around the table does not depend on where
this traveling starts. Hence, (2) also does not differentiate between the n− 1
(non-head) probabilities of BTLS.

Thus, all the n− 1 (non-head) probabilities of BTLS are equal, and are there-
fore equal to 1/(n− 1).



(b) This problem is equivalent to asking how many steps it takes, on average, for
a random walk in one dimension to hit n sites.

Let fn be this expected number of steps. And let gn be defined as follows.
Assume that n sites have been visited, and that the present position is at one
of the ends of this string of n sites. Then gn is the expected number of steps
it takes to reach a new site.

We then have
fn = fn−1 + gn−1. (3)

This is true because in order to reach n sites, you must first reach n− 1 sites
(which takes fn−1 steps, on average). And then you must reach one more site,
starting at the end of the string of n − 1 sites (which takes gn−1 steps, on
average).

Claim: gn = n.

Proof: Let the sites which have been visited be labeled 1, 2, . . . , n. Let the
present position be site 1.

There is a 1/2 chance that the next step will be to site number 0, in which
case it only takes one step to reach a new site.

There is a 1/2 chance that the next step will be to site number 2. By con-
sidering this site to be an end-site of the string 2, 3, . . . , n− 1 (which has size
n− 2), we see that it takes gn−2 steps (on average) to reach sites 1 or n. And
then from each of these, it takes of gn steps (on average) to reach a new site.

Putting this together gives gn = 1
2(1) + 1

2(1 + gn−2 + gn), or

gn = gn−2 + 2. (4)

Since we obviously have g1 = 1, and since it is easy to see from the above
reasoning that g2 = 2 (or equivalently, that g0 = 0), we inductively obtain
gn = n.

Therefore, fn = fn−1 + (n− 1). Using f1 = 0, we see by induction that

fn =
n(n− 1)

2
. (5)


