Solution

Week 42 (6/30/03)

How much change?

If the item costs between $N / 2$ and N dollars, then you can buy only one item. These extremes will produce remainders of $N / 2$ and 0 , respectively. The average amount of money left over in this region, which has length $N(1-1 / 2)=N / 2$, is therefore $N / 4$.

Likewise, if the item costs between $N / 3$ and $N / 2$ dollars, then you can buy only two items. These extremes will produce remainders of $N / 3$ and 0 , respectively. The average amount of money left over in this region, which has length $N(1 / 2-1 / 3)=$ $N / 6$, is therefore $N / 6$.

Continuing in this manner, we see that if the item costs between $N /(n+1)$ and N / n, then you can buy only n items. These extremes will produce remainders of $N /(n+1)$ and 0 , respectively. The average amount of money left over in this region, which has length $N(1 / n-1 /(n+1))=N / n(n+1)$, is therefore $N / 2(n+1)$.

The expected amount, M, of money left over is therefore

$$
\begin{aligned}
M & =\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right) \frac{N}{2(n+1)} \\
& =\frac{N}{2} \sum_{n=1}^{\infty}\left(\frac{1}{n(n+1)}-\frac{1}{(n+1)^{2}}\right) \\
& =\frac{N}{2} \sum_{n=1}^{\infty}\left(\left[\frac{1}{n}-\frac{1}{n+1}\right]-\frac{1}{(n+1)^{2}}\right) \\
& =\frac{N}{2}\left(1-\left(\frac{\pi^{2}}{6}-1\right)\right) \\
& =N\left(1-\frac{\pi^{2}}{12}\right) .
\end{aligned}
$$

In the third line, we have used the fact that the sum in brackets telescopes to 1 , and also that $\sum_{n=1}^{\infty} 1 / n^{2}=\pi^{2} / 6$. Since $\pi^{2} / 12 \approx 0.82$, the amount of money left over is roughly (0.18) N dollars. Note that what we have essentially done in this problem is find the area under the graph in the following figure.

