Solution

Week $54 \quad(9 / 22 / 03)$

Rolling the die

To get a feel for the problem, you can work out the answer for small values of N. For $N=1$, the probability that the first player wins is 1 . For $N=2$, it is $3 / 4$. And for $N=3$, it is $19 / 27$. A pattern in these numbers is more evident if we instead list the probabilities that the first player loses. These are $0,1 / 4$, and $8 / 27$. (And if you work things out for $N=4$, you'll obtain $81 / 256$.) We therefore guess that the probability, P_{L}, that the first player loses is

$$
\begin{equation*}
P_{L}=\left(1-\frac{1}{N}\right)^{N} \tag{1}
\end{equation*}
$$

We'll prove this by proving the following more general claim. Eq. (1) is the special case of the claim with $r=0$.

Claim: Let L_{r} be the probability that a player loses, given that a roll of r has just occurred. Then

$$
\begin{equation*}
L_{r}=\left(1-\frac{1}{N}\right)^{N-r} \tag{2}
\end{equation*}
$$

Proof: Assume that a roll of r has just occurred. To determine the probability, L_{r}, that the player who goes next loses, let's consider the probability, $1-L_{r}$, that she wins. In order to win, she must roll a number, a, greater than r (each of which occurs with probability $1 / N)$; and her opponent must then lose, given that he has to beat a roll of a (this occurs with probability L_{a}). So the probability of winning, given that one must beat a roll of r, is

$$
\begin{equation*}
1-L_{r}=\frac{1}{N}\left(L_{r+1}+L_{r+2}+\cdots+L_{N}\right) \tag{3}
\end{equation*}
$$

If we write down the analogous equation using $r-1$ instead of r,

$$
\begin{equation*}
1-L_{r-1}=\frac{1}{N}\left(L_{r}+L_{r+1}+\cdots+L_{N}\right) \tag{4}
\end{equation*}
$$

and then subtract eq. (4) from eq. (3), we obtain

$$
\begin{equation*}
L_{r-1}=\left(1-\frac{1}{N}\right) L_{r} \tag{5}
\end{equation*}
$$

for all r from 1 to N. Using $L_{N}=1$, we find that

$$
\begin{equation*}
L_{r}=\left(1-\frac{1}{N}\right)^{N-r} \quad(0 \leq r \leq N) \tag{6}
\end{equation*}
$$

We may consider the first player to start out with a roll of $r=0$ having just occurred. Therefore, the probability that the first player wins is $1-(1-1 / N)^{N}$. For large N, this probability approaches $1-1 / e \approx 63.2 \%$. For a standard die with $N=6$, it takes the value $1-(5 / 6)^{6} \approx 66.5 \%$.

Note that the probability that the first player wins can be written as

$$
\begin{equation*}
1-\left(1-\frac{1}{N}\right)^{N}=\frac{1}{N}\left(\left(1-\frac{1}{N}\right)^{N-1}+\left(1-\frac{1}{N}\right)^{N-2}+\cdots+\left(1-\frac{1}{N}\right)^{1}+1\right) \tag{7}
\end{equation*}
$$

The right-hand side shows explicitly the probabilities of winning, depending on what the first roll is. For example, the first term on the right-hand side is the probability, $1 / N$, that the first player rolls a 1 , times the probability, $(1-1 / N)^{N-1}$, that the second player loses given that he must beat a 1 .

