
Solution

Week 57 (10/13/03)

Throwing a beach ball

On both the way up and the way down, the total force on the ball is

F = −mg −mαv. (1)

On the way up, v is positive, so the drag force points downward, as it should. And
on the way down, v is negative, so the drag force points upward.

Our strategy for finding vf will be to produce two different expressions for the
maximum height, h, and then equate them. We’ll find these two expressions by
considering the upward and then the downward motion of the ball. In doing so, we
will need to write the acceleration of the ball as

a =
dv

dt
=

dy

dt

dv

dy
= v

dv

dy
. (2)

For the upward motion, F = ma gives

−mg −mαv = mv
dv

dy

=⇒
∫ h

0
dy = −

∫ 0

v0

v dv

g + αv
. (3)

where we have taken advantage of the fact that we know that the speed of the ball
at the top is zero. Writing v/(g + αv) as [1 − g/(g + αv)]/α, we may evaluate the
integral to obtain

h =
v0

α
− g

α2
ln

(
1 +

αv0

g

)
. (4)

Now let us consider the downward motion. Let vf be the final speed, which is
a positive quantity. The final velocity is then the negative quantity, −vf . Using
F = ma, we similarly obtain

∫ 0

h
dy = −

∫ −vf

0

v dv

g + αv
. (5)

Performing the integration (or just replacing the v0 in eq. (4) with −vf ) gives

h = −vf

α
− g

α2
ln

(
1− αvf

g

)
. (6)

Equating the expressions for h in eqs. (4) and (6) gives an implicit equation for vf

in terms of v0,

v0 + vf =
g

α
ln

(
g + αv0

g − αvf

)
. (7)

Remarks: In the limit of small α (more precisely, in the limit αv0/g ¿ 1), we can use
ln(1+x) = x−x2/2+ · · · to obtain approximate values for h in eqs. (4) and (6). The results
are, as expected,

h ≈ v2
0

2g
, and h ≈ v2

f

2g
. (8)
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We can also make approximations for large α (or large αv0/g). In this limit, the log
term in eq. (4) is negligible, so we obtain h ≈ v0/α. And eq. (6) gives vf ≈ g/α, because
the argument of the log must be very small in order to give a very large negative number,
which is needed to produce a positive h on the left-hand side. There is no way to relate vf

and h is this limit, because the ball quickly reaches the terminal velocity of −g/α (which is
the velocity that makes the net force equal to zero), independent of h.

Let’s now find the times it takes for the ball to go up and to go down. We’ll present
two methods for doing this.

First method: Let T1 be the time for the upward path. If we write the acceleration
of the ball as a = dv/dt, then F = ma gives

−mg −mαv = m
dv

dt

=⇒
∫ T1

0
dt = −

∫ 0

v0

dv

g + αv
. (9)

T1 =
1
α

ln
(

1 +
αv0

g

)
. (10)

In a similar manner, we find that the time T2 for the downward path is

T2 = − 1
α

ln
(

1− αvf

g

)
. (11)

Therefore,

T1 + T2 =
1
α

ln

(
g + αv0

g − αvf

)
. (12)

Using eq. (7), we have

T1 + T2 =
v0 + vf

g
. (13)

This is shorter than the time in vacuum (namely 2v0/g) because vf < v0.

Second method: The very simple form of eq. (13) suggests that there is a cleaner
way to calculate the total time of flight. And indeed, if we integrate mdv/dt =
−mg − mαv with respect to time on the way up, we obtain −v0 = −gT1 − αh
(because

∫
v dt = h). Likewise, if we integrate m dv/dt = −mg −mαv with respect

to time on the way down, we obtain −vf = −gT2 + αh (because
∫

v dt = −h).
Adding these two results gives eq. (13). This procedure only works, of course,
because the drag force is proportional to v.

Remarks: The fact that the time here is shorter than the time in vacuum isn’t obvious. On
one hand, the ball doesn’t travel as high in air as it would in vacuum (so you might think
that T1 + T2 < 2v0/g). But on the other hand, the ball moves slower in air (so you might
think that T1 +T2 > 2v0/g). It isn’t obvious which effect wins, without doing a calculation.

For any α, you can use eq. (10) to show that T1 < v0/g. But T2 is harder to get a
handle on, because it is given in terms of vf . But in the limit of large α, the ball quickly
reaches terminal velocity, so we have T2 ≈ h/vf ≈ (v0/α)/(g/α) = v0/g. Interestingly, this
is the same as the downward (and upward) time for a ball thrown in vacuum.
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