
Solution

Week 6 (10/21/02)

Flipping a coin

(a) There is a 1/2 chance that you win one dollar, a 1/4 chance that you win two
dollars, a 1/8 chance that you win three dollars, etc. Therefore, the average
value of your winnings is
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This may be written as
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So you expect to win an average of two dollars each time you play this game.

(b) There is a 1/2 chance that you win one dollar, a 1/4 chance that you win two
dollars, a 1/8 chance that you win four dollars, etc. So the average value of
your winnings is now
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You will quickly discover, however, that you will not win an infinite amount
of money playing this game. We seem to have a paradox. The expectation
value is infinite, but certainly no one is going to put up an infinite amount of
money, or even a million dollars, for the opportunity to play this game once.
What is the solution to this paradox?

The answer is that an expectation value is defined to be an average over an
infinite number of trials (or the limit towards an infinite number), but you
are simply not going to play an infinite number of games. In other words,
the calculated expectation value doesn’t agree with your experiment, because
your experiment has nothing whatsoever to do with the precise definition of an
expectation value. To be sure, if you did somehow play an infinite number of
games, then you would indeed have an infinite average for your winnings. The
whole paradox arises from trying to make “expectation value” mean something
it doesn’t.

This might not be a very satisfying explanation, so let us get a better feeling
for the problem by looking at a situation where someone plays N = 2n games.
How much money would a “reasonable” person be willing to put up front for
the opportunity to play these N games?

Well, in about 2n−1 games he will win one dollar; in about 2n−2 he will win two
dollars; in about 2n−3 games he will win four dollars; etc., until in about one



game he will win 2n−1 dollars. In addition, there are the “fractional” numbers
of games where he wins much larger quantities of money (for example, in
half a game he will win 2n dollars, etc.), and this is indeed where the infinite
expectation value comes from, in the calculation above. But let us forget about
these for the moment, in order to just get a lower bound on what a reasonable
person should put on the table. Adding up the above cases gives the total
winnings as 2n−1(1)+2n−2(2)+2n−3(4)+ · · ·+1(2n−1) = 2n−1n. The average
value of these winnings in the N = 2n games is therefore 2n−1n/2n = n/2 =
(log2 N)/2.

A reasonable person should therefore expect to win at least (log2 N)/2 dollars
per game. (By “expect”, we mean that if the player plays a very large number
of sets of N games, and then takes an average over these sets, he will win
at least 2n−1n dollars per set.) This clearly increases with N , and goes to
infinity as N goes to infinity. It is nice to see that we can obtain this infinite
limit without having to worry about what happens in the infinite number
of “fractional” games. Remember, though, that this quantity, (log2 N)/2, has
nothing to do with a true expectation value, which is only defined for N →∞.

Someone may still not be satisfied and want to ask, “But what if I play only
N games? I will never ever play another game. How much money do I expect
to win?” The proper answer is that the question has no meaning. It is not
possible to define how much one expects to win, if one is not willing to take
an average over a arbitrarily large number of trials.


