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Solution
Week 61 (11/10/03)

Falling rope

First Solution: Let o be the mass density of the rope. From conservation of
energy, we know that the rope’s final kinetic energy, which is (0 L)v?/2, equals
the loss in potential energy. This loss equals (0 L)(L/2)g, because the center
of mass falls a distance L/2. Therefore,

v=1/gL. (1)

This is the same as the speed obtained by an object that falls a distance L/2.
Note that if the initial piece hanging down through the hole is arbitrarily short,
then the rope will take an arbitrarily long time to fall down. But the final
speed will be always be (arbitrarily close to) v/gL.

Second Solution: Let z be the length that hangs down through the hole.
The gravitational force on this length, which is (ox)g, is responsible for chang-
ing the momentum of the entire rope, which is (o L)&. Therefore, F' = dp/dt
gives (ox)g = (oL)Z, which is simply the F' = ma equation. Hence, & =
(9/L)x, and the general solution to this equation is

o(t) = AetVI/L 1 Be~tVa/L. 2)

Note that if € is the initial value for z, then A = B = €/2 satisfies the ini-
tial conditions z(0) = € and #(0) = 0, in which case we may write z(t) =
ecosh(t\/g/L). But we won’t need this information in what follows.

Let T be the time for which z(T) = L. If € is very small, then T" will be very

large. But for large ¢,' we may neglect the negative-exponent term in eq. (2).
We then have

x ~ AetVIlL = i~ AeVIL g/ L~ xy/g/L (for large t).
3)

When x = L, we obtain

#(T) = Ly/g/L = VgL, (4)
in agreement with the first solution.

Let o be the mass density of the rope, and let « be the length that hangs
down through the hole. The gravitational force on this length, which is (ox)g,
is responsible for changing the momentum of the rope. This momentum is
(oz)d, because only the hanging part is moving. Therefore, F' = dp/dt gives

d(ozi)
dt

oxg = rg = ri + i’ (5)

"More precisely, for t > /L/g.



Note that ' = ma gives the wrong equation, because it neglects the fact that
the moving mass, ox, is changing. It therefore misses the second term on
the right-hand side of eq. (5). In short, the momentum of the rope increases
because it is speeding up (which gives the zZ term) and because additional
mass is continually being added to the moving part (which gives the 22 term,
as you can show).

To solve eq. (5) for x(t), note that g is the only parameter in the equation.
Therefore, the solution for z(t) can involve only ¢’s and #’s.2 By dimensional
analysis, z(t) must then be of the form x(t) = bgt?, where b is a numerical
constant to be determined. Plugging this expression for x(¢) into eq. (5) and
dividing by ¢?t? gives b = 2b% 4 4b%. Therefore, b = 1/6, and our solution may

be written as 1
_ 1[92
o= (4) 7 (

This is the equation for something that accelerates downward with acceleration
g = g/3. The time the rope takes to fall a distance L is then given by
L = ¢'t?/2, which yields t = /2L/g’. The final speed in thus

2gL

v=g't=+/2Lg =/ ——. (7)

3

This is smaller than the /gL result from part (a). We therefore see that
although the total time for the scenario in part (a) is very large, the final
speed in that case is in fact larger than that in the present scenario.

REMARKS: Using eq. (7), you can show that 1/3 of the available potential energy
is lost to heat. This inevitable loss occurs during the abrupt motions that suddenly
bring the atoms from zero to non-zero speed when they join the moving part of the
rope. The use of conservation of energy is therefore not a valid way to solve this
problem.

You can show that the speed in part (a)’s scenario is smaller than the speed in part
(b)’s scenario for x less than 2L /3, but larger for x greater than 2L/3.

2The other dimensionful quantities in the problem, L and o, do not appear in eq. (5), so they
cannot appear in the solution. Also, the initial position and speed (which will in general appear in
the solution for z(t), because eq. (5) is a second-order differential equation) do not appear in this
case, because they are equal to zero.



