
Solution

Week 63 (11/24/03)

Minimal surface

First Solution: By symmetry, the surface is obtained by rotating a certain function
y(x) around the x-axis. Our goal is to find y(x). Consider a thin vertical cross-
sectional ring of the surface, as shown below. The ratio of the circumferences of the
circular boundaries of the ring is y2/y1.
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The condition that the bubble be in equilibrium is that the tension (force per unit
length) throughout the surface is constant, because otherwise there would be a net
force on some little patch. Therefore, the requirement that the horizontal forces on
the ring cancel is y1 cos θ1 = y2 cos θ2, where the θ’s are the angles of the surface,
as shown. In other words, y cos θ is constant throughout the surface. But cos θ =
1/

√
1 + y′2, so we have

y√
1 + y′2

= Constant =⇒ 1 + y′2 = By2, (1)

where B is some constant. At this point, motivated by the facts that 1 + sinh2 z =
cosh2 z and d(cosh z)/dz = sinh z, we can guess that the solution to this differential
equation is

y(x) =
1
b

cosh b(x + d), (2)

where b =
√

B, and d is a constant of integration. Or, we can do things from
scratch by solving for y′ ≡ dy/dx and then separating variables to obtain (again
with b =

√
B)

dx =
dy√

(by)2 − 1
. (3)

We can then use the fact that the integral of 1/
√

z2 − 1 is cosh−1 z, to obtain the
same result as in eq. (2).

Eq. (2) gives the general solution in the case where the rings may have unequal
radii. The constants b and d are determined by the boundary conditions (the facts
that the y values equal the radii of the rings at the x-values of the rings). In the
special case at hand where the radii are equal, the two boundary conditions give
r = (1/b) cosh b(±` + d), where x = 0 has been chosen to be midway between the
rings. Therefore, d = 0, and so the constant b is determined from

r =
1
b

cosh b`. (4)
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Our solution for y(x) then

y(x) =
1
b

cosh bx. (5)

There is, however, an ambiguity in this solution, in that there may be two solutions
for b in eq. (4). We’ll comment on this in the first “Remark” at the end of the
problem.

Second Solution: We can also solve this problem by using a “principle of least
action” type of argument, which takes advantage of the fact that the surface is the
one with the minimum area. There are two ways of going about this. One is quick,
and the other is lengthy. A sketch of the lengthy way is the following. The area of
the surface in the following figure is

∫ `

−`
2πy

√
1 + y′2 dx, (6)

where y′ ≡ dy/dx.

r

x

y

r
ll

In analogy with the principle of least action, our “Lagrangian” (from a physicist’s
point of view) is L = 2πy

√
1 + y′2, and in order for the area to be minimized, L

must satisfy the Euler-Lagrange equation,

d

dx

(
∂L

∂y′

)
=

∂L

∂y
. (7)

It is, alas, rather tedious to work through all of the necessary differentiations here.
If you so desire, you can show that this equation does in fact lead to eq. (1). But
let’s instead just do things the quick way. If we consider x to be a function of y
(there’s no need to worry about any double-value issues, because the Euler-Lagrange
formalism deals with local variations), we may write the area as

∫ `

−`
2πy

√
1 + x′2 dy, (8)

where x′ ≡ dx/dy. Our “Lagrangian” is now L = 2πy
√

1 + x′2, and the Euler-
Lagrange equation gives

d

dy

(
∂L

∂x′

)
=

∂L

∂x
=⇒ d

dy

(
yx′√

1 + x′2

)
= 0. (9)

The zero on the right-hand side makes everything nice and easy, because it tells us
that yx′/

√
1 + x′2 is constant. Defining this constant to be 1/b, and then solving
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for x′ and separating variables, gives

dx =
dy√

(by)2 − 1
, (10)

which is identical to eq. (3). The solution then concludes as above.

Let us now determine the maximum value of `/r for which the minimal surface
exists. If `/r is too large, then we will see that there is no solution for b in eq. (4).
In short, the minimal “surface” turns out to be the two given circles, attached by a
line, which isn’t a nice two-dimensional surface. If you perform the experiment with
soap bubbles (which want to minimize their area), and if you pull the rings too far
apart, then the surface will break and disappear, as it tries to form the two circles.

Define the dimensionless quantities,

η ≡ `

r
, and z ≡ br. (11)

Then eq. (4) becomes
z = cosh ηz. (12)

If we make a rough plot of the graphs of w = z and w = cosh ηz for a few values
of η, as shown below, we see that there is no solution for z if η is too big. The
limiting value of η for which there exists a solution occurs when the curves w = z
and w = cosh ηz are tangent; that is, when the slopes are equal in addition to the
functions being equal.

w
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z

zcosh(  η )=

w =

Let η0 be the limiting value of η, and let z0 be the place where the tangency occurs.
Then equality of the values and the slopes gives

z0 = cosh(η0z0), and 1 = η0 sinh(η0z0). (13)

Dividing the second of these equations by the first gives

1 = (η0z0) tanh(η0z0). (14)

This must be solved numerically. The solution is

η0z0 ≈ 1.200. (15)

Plugging this into the second of eqs. (13) gives
(

`

r

)

max
≡ η0 ≈ 0.663. (16)
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Note also that z0 = 1.200/η0 = 1.810. We see that if `/r is larger than 0.663, then
there is no solution for y(x) that is consistent with the boundary conditions. Above
this value of `/r, the soap bubble minimizes its area by heading toward the shape
of just two disks, but it will pop well before it reaches that configuration.

Remarks:

1. As mentioned at the end of the first solution above, there may be more than one
solution for the constant b in eq. (5). In fact, the preceding graph shows that for
any η < 0.663, there are two solutions for z in eq. (12), and hence two solutions for
b in eq. (4). This means that there are two possible surfaces that might solve our
problem. Which one do we want? It turns out that the surface corresponding to the
smaller value of b is the one that minimizes the area, while the surface corresponding
to the larger value of b is the one that (in some sense) maximizes the area.
We say “in some sense” because the surface is actually a saddle point for the area.
It can’t be a maximum, after all, because we can always make the area larger by
adding little wiggles to it. It’s a saddle point because there does exist a class of
variations for which is has the maximum area, namely ones where the “dip” in the
curve is continuously made larger (just imagine lowering the midpoint in a smooth
manner). The reason why this curve arises in the first solution above is that we
simply demanded that the surface be in equilibrium; it just happens to be an unstable
equilibrium in this case. The reason why it arises in the second solution above is that
the Euler-Lagrange technique simple sets the “derivative” equal to zero and thus does
not differentiate between maxima, minima, and saddle points.

2. How does the area of the limiting surface (with η0 = 0.663) compare with the area of
the two circles? The area of the two circles is

Ac = 2πr2. (17)

The area of the limiting surface is

As =
∫ `

−`

2πy
√

1 + y′2 dx. (18)

Using eq. (5), this becomes

As =
∫ `

−`

2π

b
cosh2 bx dx

=
∫ `

−`

π

b
(1 + cosh 2bx) dx

=
2π`

b
+

π sinh 2b`

b2
. (19)

But from the definitions of η and z, we have ` = η0r and b = z0/r for the limiting
surface. Therefore, As can be written as

As = πr2

(
2η0

z0
+

sinh 2η0z0

z2
0

)
. (20)

Plugging in the numerical values (η0 ≈ 0.663 and z0 ≈ 1.810) gives

Ac ≈ (6.28)r2, and As ≈ (7.54)r2. (21)

The ratio of As to Ac is approximately 1.2 (it’s actually η0z0, as you can show). The
limiting surface therefore has a larger area. This is expected, of course, because for
`/r > η0 the surface tries to run off to one with a smaller area, and there are no other
stable configurations besides the cosh solution we found.
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3. How does the area of the surface change if we gradually transform it from a cylinder
to the two disks? There are many ways to go about doing this transformation, but
let’s just be vague and say that we pick a nice smooth method that passes through
the two cosh solutions (if η < 0.663) that we found above. The transformation might
look something like:

2l

r

The area of the starting cylinder is Ai = (2`)(2πr) = 4πr`, and the area of the ending
two disks is Af = 2πr2. Note that the ratio of these is Ai/Af = 2`/r ≡ 2η. For
a given η ≡ `/r, what does the plot of the changing area look like? Below are four
qualitative plots, for four values of η. We’ve imagined changing η by keeping r (and
hence Af ) fixed and changing `. Ignore the actual measure along the axes; just look
at the general shape.
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We see that η = 0.663 is the value for which the maximum and minimum merge into
one point with zero slope. For higher values of η, there are no points on the curve
that have zero slope.
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The actual values of the area along these curves is nebulous, because we haven’t
been quantitative about exactly how we’re varying the surface. But the area at the
maximum and minimum (at which points we have one of our cosh surfaces) can be
found from eq. (20), which says that

As = πr2

(
2η

z
+

sinh 2ηz

z2

)
, (22)

for general η ≡ `/r and z ≡ br. For a given η, the two solutions for z are found from
eq. (12). Plugging each of these into eq. (22) gives the areas at the maximum and
minimum.
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