
Solution

Week 64 (12/1/03)

Attracting bugs

First Solution: In all of these solutions, the key point to realize is that at any
time, the bugs form the vertices of a regular N -gon, as shown below for N = 6. This
is true because this is the only configuration that respects the symmetry of the N
bugs. The N -gon will rotate and shrink until it becomes a point at the center.
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The important quantity in this first solution is the relative speed of two adjacent
bugs. This relative speed is constant, because the relative angle of the bugs’ motions
is always the same. If the bugs’ speed is v, then we see from the figure below that
the relative speed is vr = v(1 − cos θ), where θ = 2π/N . This is the rate at which
the separation between two adjacent bugs decreases.1

N = 6

v v cosθ

θ

v

For example, if N = 3 we have vr = 3v/2; if N = 4 we have vr = v; and if N = 6
we have vr = v/2. Note also that for N = 2 (which does not give not much of a
polygon, being just a straight line) we have vr = 2v, which is correct for two bugs
walking directly toward each other. And if N →∞ we have vr → 0, which is correct
for bugs walking around in a circle.

If two bugs start a distance ` apart, and if they always walk at a relative speed
of v(1 − cos θ), then the time it takes for them to meet is t = `/(v(1 − cos θ)).
Therefore, since the bugs walk at speed v, they will each travel a total distance of

vt =
`

1− cos(2π/N)
. (1)

1The transverse v sin θ component of the front bug’s velocity is irrelevant here, because it provides
no first-order change in the distance between the bugs, for small increments in time.
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Note that for a square, this distance equals the length of a side, `. For large N , the
approximation cos ≈ 1− θ2/2 gives vt ≈ N2`/(2π2).

The bugs will spiral around an infinite number of times. This is true because
the future path of the bugs at any time must simply be a scaled-down version of
the future path at the start (because any point in time may be considered to be
the start time, with a scaled-down version of the initial separation). This would
not be possible if the bugs hit the center after spiraling around only a finite number
of times. We will see in the third solution below that the bugs’ distance from the
center deceases by a factor e−2π tan(π/N) after each revolution.2

Second Solution: In this solution, we will determine how quickly the bugs ap-
proach the center of the N -gon. A bug’s velocity may be separated into radial and
tangential components, vR and vT , as shown below. Because at any instant the bugs
all lie on the vertices of a regular N -gon, they always walk at the same angle relative
to a circular motion. Therefore, the magnitudes of vR and vT remain constant.
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What is the radial component, vR, in terms of v? The angle between a bug’s motion
and a circular motion is π/N , so we have

vR = v sin(π/N). (2)

What is the radius, R0, of the initial N -gon? A little geometry shows that

R0 =
`

2 sin(π/N)
. (3)

The time it takes a bug to reach the center is then t = R0/vR = (`/v)/(2 sin2(π/N)) .
Therefore, each bug travels a total distance of

vt =
`

2 sin2(π/N)
. (4)

2Of course, bugs of non-zero size would hit each other before they reach the center. If the bugs
happen to be very, very small, then they would eventually require arbitrarily large friction with the
floor, in order to provide the centripetal acceleration needed to keep them in a spiral with a very
small radius.
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This agrees with the result of the first solution, due to the half-angle formula,
sin2(θ/2) = (1− cos θ)/2. The same reasoning used in the first solution shows that
the bugs spiral around an infinite number of times.

Third Solution: In this solution, we will parametrize a bug’s path, and then
integrate the differential arclength. Let us find a bug’s distance, R(φ), from the
center, as a function of the angle φ through which it has travelled. The angle
between a bug’s motion and a circular motion is π/N . Therefore, the change in
radius, dR, divided by the change in arclength along the circle, R dφ, is dR/(R dφ) =
− tan(π/N). Separating variables and integrating gives

∫ R

R0

dR

R
= −

∫ φ

0
tan(π/N) dφ

=⇒ ln(R/R0) = −φ tan(π/N)
=⇒ R(φ) = R0 e−φ tan(π/N), (5)

where R0 is the initial distance from the center, equal to `/(2 sin(π/N)). We now
see, as stated in the first solution, that one revolution decreases R by the factor
e−2π tan(π/N), and that an infinite number of revolutions is required for R to become
zero. Having found R(φ), we may find the total distance travelled by integrating
the arclength:

∫ √
(R dφ)2 + (dR)2 =

∫ ∞

0

√
R2 + (dR/dφ)2 dφ

=
∫ ∞

0

R0 e−φ tan(π/N) dφ

cos(π/N)

=
`

2 sin2(π/N)
. (6)

Remark: In the first solution, we found that for large N the total distance travelled
goes like `N2/(2π2). This result can also be found in the following manner. For large
N , a bug’s motion can be approximated by a sequence of circles, Cn, with radii Rn =
R0e

−n(2π) tan(π/N) ≈ R0e
−n(2π2/N). To leading order in N , the total distance travelled is

therefore the sum of the geometric series,

∞∑
n=0

2πRn ≈
∞∑

n=0

2πR0e
−n(2π2/N)

=
2πR0

1− e−2π2/N

≈ 2πR0

2π2/N

≈ N2`

2π2
, (7)

where we have used R0 = `/(2 sin(π/N)) ≈ N`/(2π).
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