
Solution

Week 68 (12/29/03)

Tower of circles

Let the bottom circle have radius 1, and let the second circle have radius r. From
the following figure, we have

sinβ =
1− r

1 + r
, where β ≡ α/2. (1)

α

β = α/2
r

r

1-r

1

In solving this problem, it is easier to work with r, instead of the angle α. So
we will find the value of r for which AC/AT is maximum, and then use eq. (1) to
obtain α. Note that r is the ratio of the radii of any two adjacent circles. This
follows from the fact that we could have drawn the above thin little right triangle
by using any two adjacent circles. Alternatively, it follows from the fact that if we
scale up the top N − 1 circles by the appropriate factor, then we obtain the bottom
N − 1 circles.

The area, AT , of the triangle may be calculated in terms of r and N as follows.
Since we could imagine stacking an infinite number of circles up to the vertex of the
triangle, we see that the the height of the triangle is

h = 2 + 2r + 2r2 + 2r3 + · · · = 2
1− r

. (2)

The length of half the base, b, of the triangle is give by b/2 = h tan β. But from eq.
(1) we have tanβ = (1− r)/(2

√
r). Therefore,

b =
2h

tan β
=

2√
r

. (3)

The area of the triangle is then

AT =
bh

2
=

2
(1− r)

√
r

. (4)
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The total area of the circles is

AC = π
(
1 + r2 + r4 + · · · r2(N−1)

)
(5)

= π
1− r2N

1− r2
. (6)

Therefore, the ratio of the areas is

AC

AT
=

π

2

√
r(1− r2N )

1 + r
. (7)

Setting the derivative of this equal to zero to obtain the maximum, we find

(1− r)− (4N + 1)r2N − (4N − 1)r2N+1 = 0. (8)

In general, this can only be solved numerically for r. But if N is very large, we can
obtain an approximate solution. To leading order in N , we may set 4N ± 1 ≈ 4N .
We may also set r2N+1 ≈ r2N , because r must be very close to 1 (otherwise there
would be nothing to cancel the “1” term in eq. (8)). For convenience, let us write
r ≡ 1− ε, where ε is very small. Eq. (8) then yields

8N(1− ε)2N ≈ ε. (9)

But (1− ε)2N ≈ e−2Nε.1 Hence,

e−2Nε ≈ ε

8N
. (10)

Taking the log of both sides gives

ε ≈ 1
2N

ln
(

8N

ε

)

≈ 1
2N

ln


 8N

1
2N ln

(
8N
ε

)

 , etc. (11)

Therefore, to leading order in N , we have

ε ≈ 1
2N

ln

(
16N2

O(lnN)

)
=

ln N −O(ln lnN) + · · ·
N

≈ lnN

N
. (12)

Note that for large N , this ε is much less than 1/
√

N , so eq. (10) is indeed valid.
Hence, r = 1− ε ≈ 1− (lnN)/N . Eq. (1) then gives

α = 2β ≈ 2 sinβ = 2
1− r

1 + r
≈ 2ε

2
= ε, (13)

and so
α ≈ ln N

N
. (14)

This is the desired answer to leading order in N , in the sense that as N becomes
very large, this answer becomes multiplicatively arbitrarily close to the true answer.

1This follows from taking the log of (1− ε)2N , to obtain ln((1− ε)2N ) = 2N ln(1− ε) ≈ −2N(ε+
ε2/2 + · · ·). This is approximately equal to −2Nε, provided that the second term in the expansion
is small, which is the case when ε ¿ 1/

√
N , which we will find to be true.
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Remarks:

1. The radius of the top circle in the stack is

RN = rN−1 ≈ rN = (1− ε)N ≈ e− ln Nε. (15)

Using eq. (10) and then eq. (12), we have

RN ≈
√

ε

8N
≈
√

ln N

2
√

2N
. (16)

2. The distance from the center of the top circle to the vertex equals

RN

sinβ
≈ RN

β
≈

√
ln N

2
√

2N
1

2N lnN
=

1√
2 lnN

, (17)

which goes to zero (but very slowly) for large N .

3. For r ≈ 1 − (lnN)/N , eq. (7) yields AC/AT ≈ π/4. This is the expected
answer, because if we look at a small number of adjacent circles, they appear
to be circles inside a rectangle (because the long sides of the isosceles triangle
are nearly parallel for small α), and it is easy to see that π/4 is the answer for
the rectangular case.

4. Using eq. (7), along with r = (1 − sinβ)/(1 + sinβ) from eq. (1), we can
make a plot of (4/π)(AC/AT ) as a function of sinβ. The figure below shows
the plot for N = 20. In the limit of very large N , the left part of the graph
approaches a vertical segment. The rest of the curve approaches a quarter
circle, as N goes to infinity. That is, (4/π)(AC/AT ) ≈ cosβ, for N → ∞.
This is true because if N is large, and if β is larger than order (1/N) lnN ,
then we effectively have an infinite number of circles in the triangle. In this
infinite case, the ratio AC/AT is given by the ratio of the area of a circle to
the area of a circumscribing trapezoid whose sides are tilted at an angle β.
You can show that this ratio is (π/4) cosβ.
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5. We can also consider the more general case of higher dimensions. For example,
instead of stacking N circles inside a triangle, we can stack N spheres inside
a cone. Let α be the angle at the peak of the cone. Then the α for which the
ratio of the total volume of the spheres to the volume of the cone is maximum
is α ≈ (2 ln N)/(3N). And the answer in the general case of d dimensions
(with d ≥ 2) is α ≈ (2 ln N)/(dN). This agrees with eq. (14) for the d = 2
case. We can show this general result as follows.

As in the original problem, the height and base radius of the generalized “cone”
are still

h =
2

1− r
, and b =

2√
r

. (18)

Therefore, the “volume” of the cone is proportional to

Vcone ∝ bd−1h ∝ 1
r(d−1)/2(1− r)

. (19)

The total volume of the “spheres” is proportional to

Vspheres ∝ 1 + rd + r2d + · · · r(N−1)d (20)

=
1− rNd

1− rd
. (21)

Therefore,
Vspheres

Vcone
∝ (1− rNd)r(d−1)/2(1− r)

1− rd
. (22)

To maximize this, it is easier to work with the small quantity ε ≡ 1 − r. In
terms of ε, we have (using the binomial expansion)

Vspheres

Vcone
∝ (1− (1− ε)Nd)(1− ε)(d−1)/2ε

1− (1− ε)d
.

≈
(1− e−Ndε)

[
1−

(
d−1
2

)
ε +

(
(d−1)(d−3)

8

)
ε2 − · · ·

]

d
[
1−

(
d−1
2

)
ε +

(
(d−1)(d−2)

6

)
ε2 − · · ·

] . (23)

The terms in the square brackets in the numerator and the denominator differ
at order ε2, so we have

Vspheres

Vcone
∝ (1− e−Ndε)(1−Aε2 + · · ·), (24)

where A happens to equal (d2 − 1)/24, but we won’t need this. Taking the
derivative of eq. (24) with respect to ε to obtain the maximum, we find

(1− e−Ndε)(−2Aε) + Nde−Ndε(1−Aε2) = 0. (25)

The N in the second term tells us that e−Ndε must be at most order 1/N .
Therefore, we can set 1 − e−Ndε ≈ 1 in the first term. Also, we can set
1−Aε2 ≈ 1 in the second term. This gives

e−Ndε ≈ 2Aε

Nd

=⇒ ε ≈ 1
Nd

ln
(

Nd

2Aε

)
. (26)
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In the same manner as in eq. (12), we find, to leading order in N ,

ε ≈ 2 ln N

dN
. (27)

And since α = ε from eq. (13), we obtain α ≈ (2 ln N)/(dN), as desired.

6. Eq. (8) can be solved numerically for r, for any value of N . A few results are:

N r α (deg) α (rad) (lnN)/N (4/π)(AC/AT )
1 .333 60 1.05 0 .770
2 .459 43.6 .760 .347 .887
3 .539 34.9 .609 .366 .931
10 .754 16.1 .282 .230 .987
100 .953 2.78 .0485 .0461 .999645
1000 .9930 .400 6.98 · 10−3 6.91 · 10−3 1− 6.96 · 10−6

106 .9999864 7.76 · 10−4 1.36 · 10−5 1.38 · 10−5 1− 2.47 · 10−11

For large N , we see that

α (rad) ≈ ln N

N
, and r ≈ 1− ln N

N
. (28)

Also, using eqs. (7) and (12), you can show that to leading order in N ,

4
π

AC

AT
≈ 1− (lnN)2 + ln N

8N2
, (29)

which agrees well with the numerical results, for large N .
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