Solution

Week 69 (1/5/04)

Compton scattering

We will solve this problem by making use of 4 -momenta. The 4-momentum of a particle is given by

$$
\begin{equation*}
P \equiv\left(P_{0}, P_{1}, P_{2}, P_{3}\right) \equiv\left(E, p_{x} c, p_{y} c, p_{z} c\right) \equiv(E, \mathbf{p} c) . \tag{1}
\end{equation*}
$$

In general, the inner-product of two 4-vectors is given by

$$
\begin{equation*}
A \cdot B \equiv A_{0} B_{0}-A_{1} B_{1}-A_{2} B_{2}-A_{3} B_{3} . \tag{2}
\end{equation*}
$$

The square of a 4 -momentum (that is, the inner product of a 4 -momentum with itself) is therefore

$$
\begin{equation*}
P^{2} \equiv P \cdot P=E^{2}-|\mathbf{p}|^{2} c^{2}=m^{2} c^{4} . \tag{3}
\end{equation*}
$$

Let's now apply these idea to the problem at hand. We will actually be doing nothing here other than applying conservation of energy and momentum. It's just that the language of 4 -vectors makes the whole procedure surprisingly simple. Note that conservation of E and \mathbf{p} during the collision can be succinctly written as

$$
\begin{equation*}
P_{\text {before }}=P_{\text {after }} \text {. } \tag{4}
\end{equation*}
$$

Referring to the figure below, the 4-momenta before the collision are

$$
\begin{equation*}
P_{\gamma}=\left(\frac{h c}{\lambda}, \frac{h c}{\lambda}, 0,0\right), \quad P_{m}=\left(m c^{2}, 0,0,0\right) . \tag{5}
\end{equation*}
$$

And the 4-momenta after the collision are

$$
\begin{equation*}
P_{\gamma}^{\prime}=\left(\frac{h c}{\lambda^{\prime}}, \frac{h c}{\lambda^{\prime}} \cos \theta, \frac{h c}{\lambda^{\prime}} \sin \theta, 0\right), \quad P_{m}^{\prime}=\text { (we won't need this). } \tag{6}
\end{equation*}
$$

If we wanted to, we could write P_{m}^{\prime} in terms of its momentum and scattering angle. But the nice thing about this 4 -momentum method is that we don't need to introduce any quantities that we're not interested in.

Conservation of energy and momentum give $P_{\gamma}+P_{m}=P_{\gamma}^{\prime}+P_{m}^{\prime}$. Therefore,

$$
\begin{align*}
\left(P_{\gamma}+P_{m}-P_{\gamma}^{\prime}\right)^{2} & =P_{m}^{\prime 2} \\
\Longrightarrow P_{\gamma}^{2}+P_{m}^{2}+P_{\gamma}^{\prime 2}+2 P_{m}\left(P_{\gamma}-P_{\gamma}^{\prime}\right)-2 P_{\gamma} P_{\gamma}^{\prime} & =P_{m}^{\prime 2} \\
\Longrightarrow 0+m^{2} c^{4}+0+2 m c^{2}\left(\frac{h c}{\lambda}-\frac{h c}{\lambda^{\prime}}\right)-2 \frac{h c}{\lambda} \frac{h c}{\lambda^{\prime}}(1-\cos \theta) & =m^{2} c^{4} . \tag{7}
\end{align*}
$$

Multiplying through by $\lambda \lambda^{\prime} /\left(2 h m c^{3}\right)$ gives the desired result,

$$
\begin{equation*}
\lambda^{\prime}=\lambda+\frac{h}{m c}(1-\cos \theta) . \tag{8}
\end{equation*}
$$

The ease of this solution arose from the fact that all the unknown garbage in P_{m}^{\prime} disappeared when we squared it.

Remarks:

1. If $\theta \approx 0$ (that is, not much scattering), then $\lambda^{\prime} \approx \lambda$, as expected.
2. If $\theta=\pi$ (that is, backward scattering) and additionally $\lambda \ll h / m c$ (that is, $m c^{2} \ll$ $h c / \lambda=E_{\gamma}$), then $\lambda^{\prime} \approx 2 h / m c$, so

$$
\begin{equation*}
E_{\gamma}^{\prime}=\frac{h c}{\lambda^{\prime}} \approx \frac{h c}{\frac{2 h}{m c}}=\frac{1}{2} m c^{2} . \tag{9}
\end{equation*}
$$

Therefore, the photon bounces back with an essentially fixed E_{γ}^{\prime}, independent of the initial E_{γ} (as long as E_{γ} is large enough). This isn't all that obvious.

