Solution
Week 71 (1/19/04)

Maximum trajectory length

Let 0 be the angle at which the ball is thrown. Then the coordinates are given by
r = (vcosf)t and y = (vsinf)t — gt?/2. The ball reaches its maximum height at
t =wvsinf/g, so the length of the trajectory is
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Letting z = tan 6 — gt/v cos ), we obtain
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Letting z = tan «, and switching the order of integration, gives
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You can either look up this integral, or you can derive it (see the remark at the end
of the solution). The result is
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As a double-check, you can verify that L = 0 when # = 0, and L = v?/g when
6 = 90°. Taking the derivative of eq. (4) to find the maximum, we obtain
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This reduces to
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Finally, you can show numerically that the solution for 6 is 6y ~ 56.5°.
A few possible trajectories are shown below. Since it is well known that 6§ = 45°

provides the maximum horizontal distance, it follows from the figure that the 6,

yielding the arc of maximum length must satisfy 6y > 45°. The exact angle, however,

requires the above detailed calculation.



0=45°

path )

REMARK: Let’s now show that the integral in eq. (3) is given by
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Letting ¢ = cosa and s = sin « for convenience, and dropping the da in the integrals, we
have

as we wanted to show.



