Propelling a car

Let the speed of the car be $v(t)$. Consider the time interval when a mass $d m$ enters the car. Conservation of momentum gives

$$
\begin{align*}
(d m) u+m v & =(m+d m)(v+d v) \\
\Longrightarrow \quad d m(u-v) & =m d v, \tag{1}
\end{align*}
$$

where we have dropped the second-order $d m d v$ term. Separating variables and integrating gives

$$
\begin{align*}
\int_{M}^{m} \frac{d m}{m}=\int_{0}^{v} \frac{d v}{u-v} & \Longrightarrow \quad \ln \left(\frac{m}{M}\right)=-\ln \left(\frac{u-v}{u}\right) \\
& \Longrightarrow \quad m=\frac{M u}{u-v} . \tag{2}
\end{align*}
$$

Note that $m \rightarrow \infty$ as $v \rightarrow u$, as it should.
How does m depend on time? Mass enters the car at a rate $\sigma(u-v) / u$, because although you throw the balls at speed u, the relative speed of the balls and the car is only $(u-v)$. Therefore,

$$
\begin{equation*}
\frac{d m}{d t}=\frac{(u-v) \sigma}{u} . \tag{3}
\end{equation*}
$$

Substituting the m from eq. (2) into this equation gives

$$
\begin{align*}
\int_{0}^{v} \frac{d v}{(u-v)^{3}} & =\int_{0}^{t} \frac{\sigma d t}{M u^{2}} \\
\Longrightarrow \quad \frac{1}{2(u-v)^{2}}-\frac{1}{2 u^{2}} & =\frac{\sigma t}{M u^{2}} \\
\Longrightarrow \quad v(t) & =u\left(1-\frac{1}{\sqrt{1+\frac{2 \sigma t}{M}}}\right) . \tag{4}
\end{align*}
$$

Note that $v \rightarrow u$ as $t \rightarrow \infty$, as it should. Integrating this speed to obtain the position gives

$$
\begin{equation*}
x(t)=u t-\frac{M u}{\sigma} \sqrt{1+\frac{2 \sigma t}{M}}+\frac{M u}{\sigma} . \tag{5}
\end{equation*}
$$

We see that even though the speed approaches u, the car will eventually be an arbitrarily large distance behind a ball with constant speed u. For example, pretend that the first ball missed the car and continued to travel forward at speed u.

