
Solution

Week 80 (3/22/04)

Nine divisible by 9

First, consider the following simpler problem:

Problem: Given any five integers, show that there is at least one subset of three
integers whose sum is divisible by 3.

Solution: Let us try to find a set of five integers that contains no subset of three
integers whose sum is divisible by 3, a task that we will show is impossible. Each of
the five integers is, for our purposes, equal to 0, 1, or 2, because we are concerned
only with divisions by 3. We cannot have one of each of these, because 0 + 1 + 2 is
divisible by 3. We must therefore have at most two of the types. But the pigeonhole
principle then implies that we have at least three of one of the types. The sum of
these three integers is divisible by 3.

Returning to the original problem, pick five integers to obtain a triplet whose sum
is divisible by 3. Then pick another five integers to obtain another such triplet. We
can continue to do this for a total of five times, given the seventeen integers.

We now have five triplets, each of whose sum is divisible by 3. As far as divisions
by 9 are concerned, these sums are equal to 0, 3, or 6. We can now use the same
reasoning as in our auxiliary problem above (but with everything scaled up by a
factor of 3) to show that we can find a set of three triplets that has a sum divisible
by 9. In other words, we have found a set of nine integers whose sum is divisible by
9.

This result is a special case of the following theorem.

Theorem: Given any 2n − 1 integers, there is at least one subset of n integers
whose sum is divisible by n.

We will prove this theorem by demonstrating two lemmas.

Lemma 1: If the theorem is true for integers n1 and n2, then it is also true for
the product n1n2.

Proof: Consider a set of 2n1n2−1 integers. Under the assumption that the theorem
is true for n1, we can certainly pick a subset of n1 integers whose sum is divisible by
n1. From the remaining 2n1n2 − 1− n1 integers we can pick another such subset of
n1 integers, and so on. We can continue to do this until we have obtained 2n2 − 1
such subsets. This is true because after forming 2n2 − 2 such subsets, there are
[2n1n2 − 1]− [(2n2 − 2)n1] = 2n1 − 1 integers left over, from which we can pick one
last such subset of n1 integers.

Now consider these 2n2 − 1 sums divided by n1. Assuming that the theorem
holds for n2, we can find n2 of these sums (divided by n1) that have a sum divisible
by n2. Bringing back in the factor of n1, we see that we have found a set of n1n2

integers whose sum is divisible by n1n2.
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In proving the general theorem, this first lemma shows that it is sufficient to prove
the theorem for primes, p:

Lemma 2: If p is prime, then given 2p− 1 integers, there is at least one subset of
p integers whose sum is divisible by p.

Proof: Consider all the possible N ≡ (2p−1
p

)
subsets of p integers. Label the sums

of these subsets as Sj , where 1 ≤ j ≤ N (these may be indexed in an arbitrary
manner), and consider the sum

S =
N∑

j=1

S
(p−1)
j . (1)

Remark: The following proof isn’t mine (I’m not sure where it came from originally). At
first glance, it might seem that adding up these (p− 1)st powers is a little out of the blue,
but it’s actually a fairly reasonable thing to do. There are two types of sums: “good” ones
that are divisible by p, and “bad” ones that aren’t. It would be nice to label them all in a
sort of binary way, say, with a “0” for good, and a “1” for bad. Fermat’s Little Theorem
(which states that if a 6≡ 0 (mod p) then ap−1 ≡ 1 (mod p)) provides the perfect way for
doing this.

We will prove this second lemma by demonstrating two claims:

Claim 1: S is be divisible by p.

Proof: Let the 2p − 1 integers be ai, where 1 ≤ i ≤ 2p − 1. Expand all of the
S

(p−1)
j powers and collect all the like terms in S. The terms will have the form of

some coefficient times ab1
i1

ab2
i2
· · · abk

ik
. The number, k, of different ai’s involved may

be any number from 1 to p− 1, and the bj ’s must of course add up to (p− 1).
We will now show that the coefficient of an arbitrary ab1

i1
ab2

i2
· · · abk

ik
term is di-

visible by p. The coefficient will depend on the bi, but it will happen to always be
divisible by p. The coefficient may be viewed as the product of two factors.

• Firstly, there is a multinomial coefficient from each S
(p−1)
j in which the given

ab1
i1

ab2
i2
· · · abk

ik
occurs. This multinomial coefficient is

( p−1
b1,b2,...,bk

)
, but it will turn

out not to be important.

• Secondly, we must count the number of different S
(p−1)
j in which the given

ab1
i1

ab2
i2
· · · abk

ik
occurs. This number may be found as follows. We know that k

of the p integers in Sj must be a1, a2, . . . , ak. The remaining p − k integers
can be any subset of the other 2p − 1 − k integers. There are

(2p−1−k
p−k

)
such

subsets.

The coefficient of the ab1
i1

ab2
i2
· · · abk

ik
term in S is therefore

( p−1
b1,b2,...,bk

)(2p−1−k
p−k

)
. Writing

the second factor in this as(
2p− 1− k

p− k

)
=

(2p− 1− k)(2p− 2− k) · · · p
(p− k)!

(2)

demonstrates that every coefficient is divisible by p, independent of the values of
the bi. Therefore, S is divisible by p. Q.E.D.
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Claim 2: If none of the Sj are divisible by p, then S is not divisible by p.

Proof: Assume that none of the Sj are divisible by p. Then by Fermat’s Little
Theorem (which states that if a 6≡ 0 (mod p) then ap−1 ≡ 1 (mod p)), we have

S ≡
(

N∑

i=1

1

)
(mod p) ≡ N (mod p). (3)

We now note that

N ≡
(

2p− 1
p

)
=

(2p− 1)(2p− 2) · · · (p + 1)
(p− 1)!

, (4)

which is not divisible by p. Therefore, S is not divisible by p. Q.E.D.

These two claims show that at least one of the Sj must be divisible by p.

Remark: For the case where n is a prime number, p, it is possible to say a bit more about
exactly how many of the Sj are divisible by p. We claim that either 1, p + 1, 2p + 1, . . ., of
the Sj are divisible by p. The reasoning is as follows.

Fermat’s Little Theorem implies that each Sj that is not divisible by p contributes 1 to
S, while each Sj that is divisible by p contributes 0 to S. Under the (incorrect) assumption
that none of the Sj are divisible by p, eq. (3) states that S ≡ N (mod p). Using eq. (4),
and noting that

(2p− 1)(2p− 2) · · · (p + 1) ≡ (p− 1)! (mod p), (5)

we see that this assumption leads to the incorrect conclusion that S ≡ 1 (mod p). But since
we know from eq. (2) that S must actually be divisible by p, then either 1, p + 1, 2p + 1,
. . ., of the Sj must be divisible by p, because each Sj that is divisible by p will contribute 0,
instead of 1, to S. Thus, for example, given five integers, there are either one, four, seven,
or ten subsets of three integers whose sum is divisible by 3.

It is easy to construct a case where only one of the Sj is divisible by p. We may pick p−1
of the 2p− 1 integers to be congruent to each other modulo p, and then pick the remaining
p integers to also be congruent to each other (but not to the other p− 1 integers) modulo p.
Then the subset consisting of these latter p integers is the only subset of p integers whose
sum is divisible by p.
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