Solution

Week 82 (4/5/04)

Standing in a line

First solution: Let T_{N} be the expected number of people who are able to make the given statement. If we consider everyone except the last person in line, then this group of $N-1$ people has by definition T_{N-1} people who are able to make the statement. Let us now add on the last person. There is a $1 / N$ chance that she is the tallest, in which case she is able to make the statement. Otherwise she cannot. Therefore, we have

$$
\begin{equation*}
T_{N}=T_{N-1}+\frac{1}{N} . \tag{1}
\end{equation*}
$$

Starting with $T_{1}=1$, we therefore inductively find

$$
\begin{equation*}
T_{N}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{N} . \tag{2}
\end{equation*}
$$

For large N, this goes like $\ln N$, which grows very slowly with N.

Second solution: Let T_{N} be the desired average. Consider the location of the tallest person. If he is the last person in the line (which occurs with probability $1 / N)$, then the problem reduces to that for the $N-1$ people in front of him. So in this case, we can expect $1+T_{N-1}$ people who are able to make the given statement.

If the tallest person is the second to last person in the line (which occurs with probability $1 / N)$, then the problem reduces to that for the $N-2$ people in front of him (because the person behind him is not able to make the statement). So in this case, we can expect $1+T_{N-2}$ people who are able to make the given statement.

Continuing along these lines, and adding up all N possibilities for the location of the tallest person, we find

$$
\begin{align*}
T_{N} & =\frac{1}{N}\left(\left(1+T_{N-1}\right)+\left(1+T_{N-2}\right)+\cdots+\left(1+T_{1}\right)+\left(1+T_{0}\right)\right) \\
\Longrightarrow \quad N T_{N} & =N+T_{N-1}+T_{N-2}+\cdots+T_{1} . \tag{3}
\end{align*}
$$

Writing down the analogous equation for $N-1$,

$$
\begin{equation*}
(N-1) T_{N-1}=(N-1)+T_{N-2}+T_{N-2}+\cdots+T_{1}, \tag{4}
\end{equation*}
$$

and then subtracting this from eq. (3), yields

$$
\begin{equation*}
T_{N}=T_{N-1}+\frac{1}{N} \tag{5}
\end{equation*}
$$

which agrees with the first solution.

