
Solution

Week 83 (4/12/04)

The brachistochrone

First solution: In the figure below, the boundary conditions are y(0) = 0 and
y(x0) = y0, with downward taken to be the positive y direction.
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From conservation of energy, the speed as a function of y is v =
√

2gy. The total
time is therefore

T =
∫ x0

0

ds

v
=

∫ x0

0

√
1 + y′2√
2gy

dx. (1)

Our goal is to find the function y(x) that minimizes this integral, subject to the
boundary conditions above. We can therefore apply the results of the variational
technique, with a “Lagrangian” equal to

L ∝
√

1 + y′2√
y

. (2)

The Euler-Lagrange equation is

d

dx
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=
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y
. (3)

Using the product rule on the three factors on the left-hand side, and making copious
use of the chain rule, we obtain
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Multiplying through by 2y
√

y(1 + y′2)3/2 and simplifying gives

−2yy′′ = 1 + y′2. (5)

We can integrate this equation if we multiply through by y′ and rearrange to obtain
∫ 2y′y′′

1 + y′2
= −

∫
y′

y
. =⇒ ln(1 + y′2) = − ln y + A

=⇒ 1 + y′2 =
B

y
, (6)
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where B ≡ eA. We must now integrate one more time. Solving for y′ and separating
variables gives √

y dy√
B − y

= ± dx. (7)

A helpful change of variables to get rid of the square root in the denominator is
y ≡ B sin2 φ. Then dy = 2B sinφ cosφ dφ, and eq. (7) simplifies to

2B sin2 φ dφ = ± dx. (8)

We can now make use of the relation sin2 φ = (1− cos 2φ)/2 to integrate this. The
result is B(2φ− sin 2φ) = ± 2x− C, where C is an integration constant.

Now note that we may rewrite our definition of φ (which was y ≡ B sin2 φ) as
2y = B(1− cos 2φ). If we then define θ ≡ 2φ, we have

x = ± a(θ − sin θ)± d, y = a(1− cos θ). (9)

where a ≡ B/2, and d ≡ C/2.
The particle starts at (x, y) = (0, 0). Therefore, θ starts at θ = 0, since this

corresponds to y = 0. The starting condition x = 0 then implies that d = 0. Also,
we are assuming that the wire heads down to the right, so we choose the positive
sing in the expression for x. Therefore, we finally have

x = a(θ − sin θ), y = a(1− cos θ). (10)

This is the parametrization of a cycloid, which is the path taken by a point on the
rim of a rolling wheel. The initial slope of the y(x) curve is infinite, as you can
check.

Second solution: Let’s use a variational argument again, but now with y as the
independent variable. That is, let the chain be described by the function x(y). The
arclength is now given by ds =

√
1 + x′2 dy. Therefore, instead of the Lagrangian

in eq. (2), we now have

L ∝
√

1 + x′2√
y

. (11)

The Euler-Lagrange equation is

d

dy

(
∂L

∂x′

)
=
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=⇒ d

dy

(
1√
y

x′√
1 + x′2

)
= 0. (12)

The zero on the right-hand side makes things nice and easy, because it means that
the quantity in parentheses is a constant. Call it D. We then have

1√
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x′√
1 + x′2

= D =⇒ 1√
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= D

=⇒ 1√
y

1√
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= D. (13)

This is equivalent to eq. (6), and the solution proceeds as above.
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Third solution: Note that the “Lagrangian” in the first solution above, which is
given in eq. (2) as

L =
√

1 + y′2√
y

, (14)

is independent of x. Therefore, in analogy with conservation of energy (which arises
from a Lagrangian that is independent of t), the quantity

E ≡ y′
∂L

∂y′
− L =

y′2√
y
√

1 + y′2
−

√
1 + y′2√

y
=

−1√
y
√

1 + y′2
(15)

is a constant. We have therefore again reproduced eq. (6).
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