Solution
Week 83 (4/12/04)

The brachistochrone

First solution: In the figure below, the boundary conditions are y(0) = 0 and
y(xo) = yo, with downward taken to be the positive y direction.
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From conservation of energy, the speed as a function of y is v = +/2gy. The total
time is therefore
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Our goal is to find the function y(z) that minimizes this integral, subject to the
boundary conditions above. We can therefore apply the results of the variational
technique, with a “Lagrangian” equal to
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The Euler-Lagrange equation is
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Using the product rule on the three factors on the left-hand side, and making copious
use of the chain rule, we obtain
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Multiplying through by 2y,/y(1 + ¢/ 2)3/ 2 and simplifying gives
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We can integrate this equation if we multiply through by ¢’ and rearrange to obtain
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where B = e”. We must now integrate one more time. Solving for 3 and separating
variables gives
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A helpful change of variables to get rid of the square root in the denominator is
y = Bsin? ¢. Then dy = 2Bsin ¢ cos ¢ d¢, and eq. (7) simplifies to

2Bsin® ¢ d¢ = + da. (8)

We can now make use of the relation sin? ¢ = (1 — cos2¢)/2 to integrate this. The
result is B(2¢ — sin2¢) = £+ 2z — C, where C is an integration constant.

Now note that we may rewrite our definition of ¢ (which was y = Bsin? ¢) as
2y = B(1 — cos2¢). If we then define 6 = 2¢, we have
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where a = B/2, and d = C/2.

The particle starts at (z,y) = (0,0). Therefore, 6 starts at § = 0, since this
corresponds to y = 0. The starting condition x = 0 then implies that d = 0. Also,
we are assuming that the wire heads down to the right, so we choose the positive
sing in the expression for x. Therefore, we finally have

x = a(f —sinb), y =a(l —cos#h). (10)

This is the parametrization of a cycloid, which is the path taken by a point on the
rim of a rolling wheel. The initial slope of the y(x) curve is infinite, as you can
check.

Second solution: Let’s use a variational argument again, but now with y as the
independent variable. That is, let the chain be described by the function x(y). The
arclength is now given by ds = v/1 + 2’2 dy. Therefore, instead of the Lagrangian

in eq. (2), we now have
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The Euler-Lagrange equation is
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The zero on the right-hand side makes things nice and easy, because it means that
the quantity in parentheses is a constant. Call it D. We then have
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This is equivalent to eq. (6), and the solution proceeds as above.



Third solution: Note that the “Lagrangian” in the first solution above, which is

given in eq. (2) as
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is independent of x. Therefore, in analogy with conservation of energy (which arises
from a Lagrangian that is independent of ¢), the quantity
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is a constant. We have therefore again reproduced eq. (6).
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