Solution

Week $83 \quad(4 / 12 / 04)$

The brachistochrone

First solution: In the figure below, the boundary conditions are $y(0)=0$ and $y\left(x_{0}\right)=y_{0}$, with downward taken to be the positive y direction.

From conservation of energy, the speed as a function of y is $v=\sqrt{2 g y}$. The total time is therefore

$$
\begin{equation*}
T=\int_{0}^{x_{0}} \frac{d s}{v}=\int_{0}^{x_{0}} \frac{\sqrt{1+y^{\prime 2}}}{\sqrt{2 g y}} d x \tag{1}
\end{equation*}
$$

Our goal is to find the function $y(x)$ that minimizes this integral, subject to the boundary conditions above. We can therefore apply the results of the variational technique, with a "Lagrangian" equal to

$$
\begin{equation*}
L \propto \frac{\sqrt{1+y^{\prime 2}}}{\sqrt{y}} \tag{2}
\end{equation*}
$$

The Euler-Lagrange equation is

$$
\begin{equation*}
\frac{d}{d x}\left(\frac{\partial L}{\partial y^{\prime}}\right)=\frac{\partial L}{\partial y} \quad \Longrightarrow \quad \frac{d}{d x}\left(\frac{1}{\sqrt{y}} \cdot y^{\prime} \cdot \frac{1}{\sqrt{1+y^{\prime 2}}}\right)=-\frac{\sqrt{1+y^{\prime 2}}}{2 y \sqrt{y}} \tag{3}
\end{equation*}
$$

Using the product rule on the three factors on the left-hand side, and making copious use of the chain rule, we obtain

$$
\begin{equation*}
-\frac{y^{\prime 2}}{2 y \sqrt{y} \sqrt{1+y^{\prime 2}}}+\frac{y^{\prime \prime}}{\sqrt{y} \sqrt{1+y^{\prime 2}}}-\frac{y^{\prime 2} y^{\prime \prime}}{\sqrt{y}\left(1+y^{\prime 2}\right)^{3 / 2}}=-\frac{\sqrt{1+y^{\prime 2}}}{2 y \sqrt{y}} . \tag{4}
\end{equation*}
$$

Multiplying through by $2 y \sqrt{y}\left(1+y^{\prime 2}\right)^{3 / 2}$ and simplifying gives

$$
\begin{equation*}
-2 y y^{\prime \prime}=1+y^{\prime 2} \tag{5}
\end{equation*}
$$

We can integrate this equation if we multiply through by y^{\prime} and rearrange to obtain

$$
\begin{array}{rll}
\int \frac{2 y^{\prime} y^{\prime \prime}}{1+y^{\prime 2}}=-\int \frac{y^{\prime}}{y} . & \Longrightarrow \quad \ln \left(1+y^{\prime 2}\right)=-\ln y+A \\
& \Longrightarrow \quad 1+y^{\prime 2}=\frac{B}{y} \tag{6}
\end{array}
$$

where $B \equiv e^{A}$. We must now integrate one more time. Solving for y^{\prime} and separating variables gives

$$
\begin{equation*}
\frac{\sqrt{y} d y}{\sqrt{B-y}}= \pm d x \tag{7}
\end{equation*}
$$

A helpful change of variables to get rid of the square root in the denominator is $y \equiv B \sin ^{2} \phi$. Then $d y=2 B \sin \phi \cos \phi d \phi$, and eq. (7) simplifies to

$$
\begin{equation*}
2 B \sin ^{2} \phi d \phi= \pm d x \tag{8}
\end{equation*}
$$

We can now make use of the relation $\sin ^{2} \phi=(1-\cos 2 \phi) / 2$ to integrate this. The result is $B(2 \phi-\sin 2 \phi)= \pm 2 x-C$, where C is an integration constant.

Now note that we may rewrite our definition of ϕ (which was $y \equiv B \sin ^{2} \phi$) as $2 y=B(1-\cos 2 \phi)$. If we then define $\theta \equiv 2 \phi$, we have

$$
\begin{equation*}
x= \pm a(\theta-\sin \theta) \pm d, \quad y=a(1-\cos \theta) . \tag{9}
\end{equation*}
$$

where $a \equiv B / 2$, and $d \equiv C / 2$.
The particle starts at $(x, y)=(0,0)$. Therefore, θ starts at $\theta=0$, since this corresponds to $y=0$. The starting condition $x=0$ then implies that $d=0$. Also, we are assuming that the wire heads down to the right, so we choose the positive sing in the expression for x. Therefore, we finally have

$$
\begin{equation*}
x=a(\theta-\sin \theta), \quad y=a(1-\cos \theta) . \tag{10}
\end{equation*}
$$

This is the parametrization of a cycloid, which is the path taken by a point on the rim of a rolling wheel. The initial slope of the $y(x)$ curve is infinite, as you can check.

Second solution: Let's use a variational argument again, but now with y as the independent variable. That is, let the chain be described by the function $x(y)$. The arclength is now given by $d s=\sqrt{1+x^{\prime 2}} d y$. Therefore, instead of the Lagrangian in eq. (2), we now have

$$
\begin{equation*}
L \propto \frac{\sqrt{1+x^{\prime 2}}}{\sqrt{y}} \tag{11}
\end{equation*}
$$

The Euler-Lagrange equation is

$$
\begin{equation*}
\frac{d}{d y}\left(\frac{\partial L}{\partial x^{\prime}}\right)=\frac{\partial L}{\partial x} \quad \Longrightarrow \quad \frac{d}{d y}\left(\frac{1}{\sqrt{y}} \frac{x^{\prime}}{\sqrt{1+x^{\prime 2}}}\right)=0 . \tag{12}
\end{equation*}
$$

The zero on the right-hand side makes things nice and easy, because it means that the quantity in parentheses is a constant. Call it D. We then have

$$
\begin{align*}
\frac{1}{\sqrt{y}} \frac{x^{\prime}}{\sqrt{1+x^{\prime 2}}}=D \quad & \Longrightarrow \quad \frac{1}{\sqrt{y}} \frac{d x / d y}{\sqrt{1+(d x / d y)^{2}}}=D \\
& \Longrightarrow \quad \frac{1}{\sqrt{y}} \frac{1}{\sqrt{(d y / d x)^{2}+1}}=D \tag{13}
\end{align*}
$$

This is equivalent to eq. (6), and the solution proceeds as above.

Third solution: Note that the "Lagrangian" in the first solution above, which is given in eq. (2) as

$$
\begin{equation*}
L=\frac{\sqrt{1+y^{\prime 2}}}{\sqrt{y}} \tag{14}
\end{equation*}
$$

is independent of x. Therefore, in analogy with conservation of energy (which arises from a Lagrangian that is independent of t), the quantity

$$
\begin{equation*}
E \equiv y^{\prime} \frac{\partial L}{\partial y^{\prime}}-L=\frac{y^{\prime 2}}{\sqrt{y} \sqrt{1+y^{\prime 2}}}-\frac{\sqrt{1+y^{\prime 2}}}{\sqrt{y}}=\frac{-1}{\sqrt{y} \sqrt{1+y^{\prime 2}}} \tag{15}
\end{equation*}
$$

is a constant. We have therefore again reproduced eq. (6).

