
Solution

Week 84 (4/19/04)

Poisson and Gaussian

(a) Consider a given box. The probability that exactly x balls end up in it is

P (x) =

(
N

x

) (
1
B

)x (
1− 1

B

)N−x

. (1)

This is true because the probability that a certain set of x balls ends up in the
given box is (1/B)x, and the probability that the other N −x balls do not end
up in the box is (1− 1/B)N−x, and there are

(N
x

)
ways to pick this certain set

of x balls.

Let us now make approximations to P (x). If N and B are much larger than
x, then N !/(N − x)! ≈ Nx, and (1− 1/B)x ≈ 1 (we’ll be more precise about
these approximations below). Therefore,

P (x) =
N !

(N − x)!x!

(
1
B

)x (
1− 1

B

)N−x

≈ Nx

x!

(
1
B

)x (
1− 1

B

)N

≈ 1
x!

(
N

B

)x

e−N/B

≡ axe−a

x!
. (2)

This result is called the Poisson distribution. For what x is P (x) maximum?
If we set P (x) = P (x + 1), we find x = a− 1. Therefore, we are most likely to
obtain a− 1 or a balls in a box.

We can also consider eq. (2) to be a function of non-integer values of x, by
using Stirling’s formula, x! ≈ xxe−x

√
2πx. This is valid for large x, which is

generally the case we will be concerned with. (But note that eq. (2) is valid
for small x, too.) Allowing non-integer values of x, the maximum P (x) occurs
halfway between a− 1 and a, that is, at x = a− 1/2. You can also show this
by taking the derivative of eq. (2), with Stirling’s expression in place of the
x!. Furthermore, you can show that x = a − 1/2 leads to a maximum P (x)
value of Pmax ≈ 1/

√
2πa.

In the real world, x can take on only integer values, of course. So it should be
the case that the sum of the P (x) probabilities, from x = 0 to x = ∞, equals
1. And indeed,

∞∑

x=0

P (x) =
∞∑

x=0

axe−a

x!

= e−a
∞∑

x=0

ax

x!

= e−aea

= 1. (3)
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Let’s now be precise about the approximations we made above.

• N !/(N − x)! ≈ Nx, because

N !
(N − x)!

= (1)
(

1− 1
N

) (
1− 2

N

)
· · ·

(
1− x− 1

N

)

≈ Nx

(
1− x2

2N

)
. (4)

So we need x ¿ √
N for this approximation to be valid.

• (1 − 1/B)x ≈ 1, because (1 − 1/B)x ≈ 1 − x/B. So we need x ¿ B for
this approximation to be valid.

• In going from the second to the third line in eq. (2), we used the
approximation (1 − 1/B)N ≈ e−N/B. A more accurate statement is
(1 − 1/B)N ≈ e−N/Be−N/2B2

, which you can verify by taking the log
of both sides. So we need N ¿ B2 for this approximation to be valid.

In practice, the basic requirement is N ¿ B2. Given this, the xmax ≈ a ≡ N/B
value that produces the maximum value of P (x) does satisfy both xmax ¿ B
and xmax ¿

√
N . So the approximations are valid in the region near xmax.

These are generally the x values we are concerned with, because if x differs
much from xmax, then P (x) is essentially zero anyway. This will be clear after
looking at the Gaussian expression that we’ll derive in part (b).

(b) In showing that a Poisson distribution can be approximated by a Gaussian
distribution, it will be easier to work with the log of P (x). Let y ≡ x−a. The
relevant y in this problem will turn out to be small compared to a, so we will
eventually expand things in terms of the small quantity y/a. Using Stirling’s
formula, x! ≈ xxe−x

√
2πx (for large x, as we are assuming here), and also

using the expansion ln(1 + ε) ≈ ε− ε2/2 + ε3/3− · · ·, we have

ln P (x) = ln

(
axe−a

x!

)

≈ ln

(
axe−a

xxe−x
√

2πx

)

= x ln a− a− x ln x + x− ln
√

2πx

= x ln(a/x) + (x− a)− ln
√

2πx

= −(a + y) ln
(

1 +
y

a

)
+ y − ln

√
2π(a + y)

= −(a + y)

(
y

a
− y2

2a2
+

y3

3a3
+ · · ·

)
+ y − ln

√
2π(a + y)

≈ −y2

2a
+

y3

6a2
− ln

√
2π(a + y). (5)

The y3/6a2 term is much smaller than the y2/2a term (assuming y ¿ a), so we
may ignore it. Also, we may set 2π(a+y) ≈ 2πa, with negligible multiplicative

2



error. Therefore, exponentiating bother sides of eq. (5) gives

P (x) ≈ e−(x−a)2/2a

√
2πa

, (6)

which is the desired Gaussian distribution. Note that the maximum occurs at
x = a. If you want to be a little more accuarate, you can include the correction
from the ln

√
2π(a + y) = ln

√
2πa + ln

√
1 + (y/a) term in eq. (5), to show

that the Gaussian is actually centered at x = a− 1/2, that is,

P (x) ≈ e−(x−(a−1/2))2
/2a

√
2πa

. (7)

The location of the maximum now agrees with the xmax = a−1/2 result that
we obtained in part (a). However, for large a, the distinction between a and
a− 1/2 is fairly irrelevant.

Note that the spread of the Gaussian is of the order
√

a. In our particular
case, if we let x − (a − 1/2) = η

√
2a, then P (x) is decreased by a factor of

e−η2
relative to the maximum. η = 1 gives about 37% of the maximum, η = 2

gives about 2%, and η = 3 gives about .01%, which is quite negligible. If,
for example, a = 1000, then virtually all of the non-negligible part of the
graph is contained in the region 900 < x < 1100, as shown below. The solid
curve in these plots is the Poisson distribution from eq. (2), and the dotted
curve is the Gaussian distribution from eq. (7). The two curves are essentially
indistinguishable in the a = 1000 case.
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We should check that the Gaussian probability distribution in eq. (7) has an
integral equal to 1. In doing this, we can let the integral run from −∞ to
∞ with negligible error. Using the general result,

∫∞
−∞ e−y2/b dy =

√
πb, and

letting b ≡ 2a, we see that the integral is indeed equal to 1.
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