
Solution

Week 86 (5/3/04)

Shifted intervals

Because ε is very small, let us discretize each of the intervals into tiny units of length
ε. If the first number is in the smallest of its possible ε-units (that is, between 0 and
ε), then it is guaranteed to be the smallest of all the numbers. If it is in the second
smallest ε-unit (between ε and 2ε), there is a 1 − ε chance that it is the smallest
of all the numbers, because this is the probability that the second number is larger
than it.1 If it is in the third ε-unit, there is a (1 − ε)(1 − 2ε) chance that it is the
smallest, because this is the probability that both the second and third numbers are
larger than it. In general, if the first number is in the kth ε-unit, there is a

Pk = (1− ε)(1− 2ε)(1− 3ε) · · · (1− (k − 1)ε) (1)

chance that it is the smallest. Since the first number has an equal probability of ε
of being in any of the ε-units, the total probability that it is the smallest therefore
equals

P = ε + εP1 + εP2 + εP3 + · · ·+ εP1/ε. (2)

For small ε, we can make an approximation to the Pk’s, as follows. Take the log of
Pk in eq. (1) to obtain

lnPk = ln(1− ε) + ln(1− 2ε) + ln(1− 3ε) + · · ·+ ln(1− (k − 1)ε)
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In going from the first to the second line, we have used the first two terms in the
Taylor series, ln(1−x) = −x−x2/2− · · ·. And in going from the fourth to the fifth
line, we have used the fact that the k values we will be concerned with will generally
be large, so we have kept only the leading power of k. Exponentiating eq. (3) gives

Pk ≈ e−εk2/2e−ε2k3/6. (4)

The second factor here is essentially equal to 1 if ε2k3 ¿ 1, that is, if k ¿ 1/ε2/3.
But we are only concerned with k values up to the order of 1/ε1/2, because if k is
much larger than this, the first exponential factor in eq. (4) makes Pk essentially

1Technically, the probability is on average equal to 1− ε/2, because the average value of the first
number in this case is 3ε/2. But the ε/2 correction in this probability (and other analogous ones)
is inconsequential.
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equal to zero. Since 1/ε1/2 ¿ 1/ε2/3, we see that whenever Pk is not essentially
zero, we can set the second exponential factor equal to 1. So we have

Pk ≈ e−εk2/2. (5)

Eq. (2) then becomes

P ≈ ε
(
1 + e−ε/2 + e−22ε/2 + e−32ε/2 + · · ·+ e−(1/ε)2ε/2

)
. (6)

Since ε is small, we may approximate this sum by an integral. And since the terms
eventually become negligibly small, we can let the integral run to infinity. We then
have

P ≈ ε

∫ ∞

0
e−(ε/2)x2

dx. (7)

Using the general result,
∫∞
−∞ e−y2/b dy =

√
πb, we have
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Note that the Pk in eq. (5) is negligibly small if k À 1
√

ε ≡ √
N . Therefore, most

of the terms in the sum in eq. (6) are negligible. The fraction of the terms that
contribute goes like

√
N/N = 1/

√
N .

Remark: Eq. (8) shows that P scales like 1/
√

N . If we consider the different setup
where all the N intervals range from 0 to 1, instead of being successively shifted by ε, then
the probability that the first number is the smallest is simply 1/N , because the smallest
number is equally likely to be in any of the N identical intervals. It makes sense that the
above 1/

√
N result for the shifted intervals is larger than the 1/N result for the non-shifted

intervals.
If you want to derive the “non-shifted” 1/N result by doing an integral, observe that

if the first number equals x, then there is a (1 − x)N−1 chance that all the other N − 1
numbers are larger than x. Therefore,

P =
∫ 1

0

(1− x)N−1 dx =
1
N

. (9)
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