
Solution

Week 87 (5/10/04)

Leaving the hemisphere

Assume that the particle slides off to the right. Let vx and vy be its horizontal
and vertical velocities, with rightward and downward taken to be positive, respec-
tively. Let Vx be the velocity of the hemisphere, with leftward taken to be positive.
Conservation of momentum gives

mvx = MVx =⇒ Vx =
(

m

M

)
vx. (1)

Consider the moment when the particle is located at an angle θ down from the top
of the hemisphere. Locally, it is essentially on a plane inclined at angle θ, so the
three velocity components are related by

vy

vx + Vx
= tan θ =⇒ vy = tan θ

(
1 +

m

M

)
vx. (2)

To see why this is true, look at things in the frame of the hemisphere. In this frame,
the particle moves to the right with speed vx+Vx, and downward with speed vy. Eq.
(2) represents the constraint that the particle remains on the hemisphere, which is
inclined at an angle θ at the given location.

Let us now apply conservation of energy. In terms of θ, the particle has fallen a
distance R(1− cos θ), so conservation of energy gives

1
2
m(v2

x + v2
y) +

1
2
MV 2

x = mgR(1− cos θ). (3)

Using eqs. (1) and (2), we can solve for v2
x to obtain

v2
x =

2gR(1− cos θ)

(1 + r)
(
1 + (1 + r) tan2 θ

) , where r ≡ m

M
. (4)

This function of θ starts at zero for θ = 0 and increases as θ increases. It then
achieves a maximum value before heading back down to zero at θ = π/2. However,
vx cannot actually decrease, because there is no force available to pull the particle
to the left. So what happens is that vx initially increases due to the non-zero normal
force that exists while contact remains. But then vx reaches its maximum, which
corresponds to the normal force going to zero and the particle losing contact with
the hemisphere. The particle then sails through the air with constant vx. Our goal,
then, is to find the angle θ for which the v2

x in eq. (4) is maximum. Setting the
derivative equal to zero gives

0 =
(
1 + (1 + r) tan2 θ

)
sin θ − (1− cos θ)(1 + r)

2 tan θ

cos2 θ

=⇒ 0 =
(
1 + (1 + r) tan2 θ

)
cos3 θ − 2(1 + r)(1− cos θ)

=⇒ 0 = cos3 θ + (1 + r)(cos θ − cos3 θ)− 2(1 + r)(1− cos θ)
=⇒ 0 = r cos3 θ − 3(1 + r) cos θ + 2(1 + r). (5)
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This is the desired equation that determines θ. It is a cubic equation, so in general
it can’t be solved so easily for θ. But in the special case of r = 1, we have

0 = cos3 θ − 6 cos θ + 4. (6)

By inspection, cos θ = 2 is an (unphysical) solution, so we find

(cos θ − 2)(cos2 θ + 2 cos θ − 2) = 0. (7)

The physical root of the quadratic equation is

cos θ =
√

3− 1 ≈ 0.732 =⇒ θ ≈ 42.9◦. (8)

Alternate solution: In the reference frame of the hemisphere, the horizontal
speed of the particle vx + Vy = (1 + r)vx. The total speed in this frame equals this
horizontal speed divided by cos θ, so

v =
(1 + r)vx

cos θ
. (9)

The particle leaves the hemisphere when the normal force goes to zero. The radial
F = ma equation therefore gives

mg cos θ =
mv2

R
. (10)

You might be concerned that we have neglected the sideways fictitious force in the
accelerating frame of the hemisphere. However, the hemisphere is not accelerating
beginning at the moment when the particle loses contact, because the normal force
has gone to zero. Therefore, eq. (10) looks exactly like it does for the familiar
problem involving a fixed hemisphere; the difference in the two problems is in the
calculation of v.

Using eqs. (4) and (9) in eq. (10) gives

mg cos θ =
m(1 + r)2

R cos2 θ
· 2gR(1− cos θ)

(1 + r)
(
1 + (1 + r) tan2 θ

) . (11)

Simplifying this yields
(
1 + (1 + r) tan2 θ

)
cos3 θ = 2(1 + r)(1− cos θ), (12)

which is the same as the second line in eq. (5). The solution proceeds as above.

Remark: Let’s look at a few special cases of the r ≡ m/M value. In the limit r → 0 (in
other words, the hemisphere is essentially bolted down), eq. (5) gives

cos θ = 2/3 =⇒ θ ≈ 48.2◦, (13)

a result which may look familiar to you. In the limit r →∞, eq. (5) reduces to

0 = cos3 θ − 3 cos θ + 2 =⇒ 0 = (cos θ − 1)2(cos θ + 2). (14)

Therefore, θ = 0. In other words, the hemisphere immediately gets squeezed out very fast
to the left.

For other values of r, we can solve eq. (5) either by using the formula for the roots of a
cubic equation (very messy), or by simply doing things numerically. A few numerical results
are:
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r cos θ θ

0 .667 48.2◦

1/2 .706 45.1◦

1 .732 42.9◦

2 .767 39.9◦

10 .858 30.9◦

100 .947 18.8◦

1000 .982 10.8◦

∞ 1 0◦
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