Ladder envelope

Let the ladder have length 1 , for simplicity. In the figure below, let the ladder slide from segment $A B$ to segment $C D$. Let $C D$ make an angle θ with the floor, and let $A B$ make an angle $\theta+d \theta$, with $d \theta$ very small. The given problem is then equivalent to finding the locus of intersections, P, of adjacent ladder positions $A B$ and $C D$.

Put the ladder on a coordinate system with the floor as the x-axis and the wall as the y-axis. Let a vertical line through B intersect $C D$ at point E. We will find the x and y coordinates of point P by determining the ratio of similar triangles $A C P$ and $B E P$. We will find this ratio by determining the ratio of $A C$ to $B E . A C$ is given by

$$
\begin{equation*}
A C=\sin (\theta+d \theta)-\sin \theta \approx \cos \theta d \theta \tag{1}
\end{equation*}
$$

which is simply the derivative of $\sin \theta$ times $d \theta$. Similarly,

$$
\begin{equation*}
B D=\cos \theta-\cos (\theta+d \theta) \approx \sin \theta d \theta \tag{2}
\end{equation*}
$$

which is simply the negative of the derivative of $\cos \theta$ times $d \theta . B E$ is then given by

$$
\begin{equation*}
B E=B D \tan \theta \approx \tan \theta \sin \theta d \theta . \tag{3}
\end{equation*}
$$

The ratio of triangle $A C P$ to triangle $B E P$ is therefore

$$
\begin{equation*}
\frac{\triangle A C P}{\triangle B E P}=\frac{A C}{B E} \approx \frac{\cos \theta}{\tan \theta \sin \theta}=\frac{\cos ^{2} \theta}{\sin ^{2} \theta} \equiv r . \tag{4}
\end{equation*}
$$

The x coordinate of P is then, using $O B=\cos (\theta+d \theta) \approx \cos \theta$,

$$
\begin{equation*}
P_{x}=\frac{r}{1+r}(O B) \approx \frac{\cos ^{2} \theta}{\sin ^{2} \theta+\cos ^{2} \theta}(O B) \approx \cos ^{3} \theta \tag{5}
\end{equation*}
$$

Likewise, the y coordinate of P is $P_{y}=\sin ^{3} \theta$. The envelope of the ladder may therefore be described parametrically by

$$
\begin{equation*}
(x, y)=\left(\cos ^{3} \theta, \sin ^{3} \theta\right), \quad \pi / 2 \geq \theta \geq 0 . \tag{6}
\end{equation*}
$$

Equivalently, using $\cos ^{2} \theta+\sin ^{2} \theta=1$, the envelope may be described by the equation,

$$
\begin{equation*}
x^{2 / 3}+y^{2 / 3}=1 . \tag{7}
\end{equation*}
$$

