Solution

Week 89 (5/24/04)

Rope between inclines

Let the total mass of the rope be m, and let a fraction f of it hang in the air. Consider the right half of this section. Its weight, $(f / 2) m g$, must be balanced by the vertical component, $T \sin \theta$, of the tension at the point where it joins the part of the rope touching the right platform. The tension at this point therefore equals $T=(f / 2) m g / \sin \theta$.

Now consider the part of the rope touching the right platform. This part has mass $(1-f) m / 2$. The normal force from the platform is $N=(1-f)(m g / 2) \cos \theta$, so the maximal friction force equals $(1-f)(m g / 2) \cos \theta$, because $\mu=1$. This fiction force must balance the sum of the gravitational force component along the plane, which is $(1-f)(m g / 2) \sin \theta$, plus the tension at the lower end, which is the $(f / 2) m g / \sin \theta$ we found above. Therefore,

$$
\begin{equation*}
\frac{1}{2}(1-f) m g \cos \theta=\frac{1}{2}(1-f) m g \sin \theta+\frac{f m g}{2 \sin \theta} \tag{1}
\end{equation*}
$$

which gives

$$
\begin{equation*}
f=\frac{F(\theta)}{1+F(\theta)}, \quad \text { where } \quad F(\theta) \equiv \cos \theta \sin \theta-\sin ^{2} \theta \tag{2}
\end{equation*}
$$

This expression for f is a monotonically increasing function of $F(\theta)$, as you can check. The maximal f is therefore obtained when $F(\theta)$ is as large as possible. Using the double-angle formulas, we can rewrite $F(\theta)$ as

$$
\begin{equation*}
F(\theta)=\frac{1}{2}(\sin 2 \theta+\cos 2 \theta-1) . \tag{3}
\end{equation*}
$$

The derivative of this is $\cos 2 \theta-\sin 2 \theta$, which equals zero when $\tan 2 \theta=1$. Therefore,

$$
\begin{equation*}
\theta_{\max }=22.5^{\circ} . \tag{4}
\end{equation*}
$$

Eq. (3) then yields $F\left(\theta_{\max }\right)=(\sqrt{2}-1) / 2$, and so eq. (2) gives

$$
\begin{equation*}
f_{\max }=\frac{\sqrt{2}-1}{\sqrt{2}+1}=(\sqrt{2}-1)^{2}=3-2 \sqrt{2} \approx 0.172 \tag{5}
\end{equation*}
$$

