Solution
Week 90 (5/31/04)
The game of NIM

As with many problems, this one can be solved in two possible ways. We can (1)
write down the correct answer, through some stroke of genius, and then verify that it
works, or (2) work out some simple cases, get a feel for the problem, and eventually
wind our way around to the correct answer. For the problem at hand, let’s proceed
via the second method and try to arrive at the answer with some motivation.

We'll start by working out what happens in particular cases of small numbers of
coins in the piles, and then we’ll look for a pattern. A reasonable way to organize
the results is to determine which combinations of numbers are guaranteed losing
positions (assuming that both players are aware of the optimal strategy).

The most obvious losing position (LP) is piles with coins of numbers (1,1,0). If
you encounter this setup, you must pick one coin, and then your opponent will pick
the last one and thereby win. More generally, the combination (N, N,0) is an LP,
because if you take off n coins from one pile, your opponent will take off n coins
from the other. He will keep matching you on each turn, until finally the situation is
(0,0,0), with his having removed the last coin(s). Note that situations of (N, M,0)
and (N, N, M) are therefore winning positions (WP), because it is possible to turn
them into an LP with one move.

This reasoning utilizes the following two obvious properties that an LP must
have: (1) removal of any number of coins from one pile of an LP creates a non-LP,
and (2) on the next turn it is always possible to bring the situation back to an LP
again.

Consider now the cases where no two piles have the same numbers of coins. The
smallest case is (1,2,z). © = 3 is the first possibility for an LP, and we quickly see
that it is indeed an LP, because the removal of any number of coins from any of the
piles yields a setup of the from (N, M,0) or (N, N, M), which are WP’s, as we saw
above.

Note that once we have found an LP, we know that any triplet that has two
numbers in common with the LP, with its remaining number larger than that in
the LP, must be a WP. This is true because it is possible to turn it into an LP by
removing coins from this last pile.

If we look at other triplets in which the first number is 1, we find that (1,4,5),
(1,6,7), (1,8,9), etc., are LP’s, as you can check by showing that any move turns
them into a WP.

Now consider cases where 2 is the smallest number of coins in a pile. We find,
after a little fiddling, that (2,4,6), (2,5,7), (2,8,10), and (2,9,11), etc., are LP’s, as
you can check.

Similar fiddling, starting with a 3, gives (3,4,7), (3,5,6), (3,8,11), and (3,9,10),
etc., as LP’s.

Let’s now make a table of this hodgepodge of results, for up to seven coins in a
pile. The two axes will be the first two numbers in an LP triplet, and the entry in
the table will be the third. The table is of course symmetric.
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As a first guess at the key to this table, we might say that two numbers in an LP
triplet must add up to the third. This, however, does not work for the (3,5,6) triplet.
It also does not work for the (3,9,10) triplet that we found above. Continuing on
to higher numbers, the guess seems to work for triplets starting with a 4. But then
if we start with a 5, we eventually find the LP triplets (5,9,12) and (5,11,14), for
which the sum of two numbers doesn’t equal the third.

In an effort to find the key, let us exploit the patterns in the table, perhaps
brought out best by the following grouping;:
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The entries in the upper right 4 x4 box are 4 more than the corresponding entries
in the upper left box. Likewise, within each 4 x 4 box, the entries in the upper right
2 x 2 box are 2 more than the entries in the upper left box. Similar results would
be evident if we doubled the size of the box (out to 15), where we would see 8 x 8
boxes having entries differing by 8.

All this suggests that powers of 2 are important in this problem. We therefore
should consider writing the numbers in a way where factors of 2 are evident, that
is, in base 2. There is no guarantee that this will help, but let’s try it and see what
happens. Let’s write down the troublesome triplets we’ve found (the ones for which
two of the numbers don’t add up to the third) in base 2:

3 11 3: 11 5 101 5: 101
5: 101 9: 1001 9: 1001 11: 1011
6: 110 10: 1010 12: 1100 14: 1110

What property do these triplets have? When written in the above form, we see
that each column in base 2 contains an even number of 1’s. After checking some



other triplets, this appears to be true in general for an LP. We will prove this with
the following theorem.

Theorem: Call a triplet an E-triplet (the “E” stands for “even”) if it has the
following property: When the three numbers are written in base 2, there is an even
number (that is, either zero or two) of 1’s in each digit’s place. Then a triplet is a
losing position (LP) if and only if it is an E-triplet.

Proof: Let us establish the following three facts concerning E-triplets:

1. Removal of any number of coins from one pile of an E-triplet will turn the
triplet into a non-E-triplet.

2. Given a non-E-triplet, it is always possible to remove coins from one pile to
turn the triplet into an E-triplet.

3. (0,0,0) is an E-triplet.
These facts may be demonstrated as follows:

1. This is true because any two numbers in an E-triplet uniquely determine the
third.

2. We will describe how to turn any non-E-triplet into an E-triplet. Write the
three numbers of coins in base 2, and put them in a column, with the unit’s
digits aligned, as we did above. Starting from the left, look at each digit’s
column until you find a column with an odd number (that is, either one or
three) of 1’s. Let this be the nth column (counting from the right).

If there is one 1 in the nth column, label the number containing this 1 as
A. If there are three 1’s, then arbitrarily pick any of the numbers to be A.
Remove coins from A by switching the 1 in the nth column to a 0, and also by
switching any 1’s to 0’s, or 0’s to 1’s, in other columns to the right of the nth
column, in order to produce an even number or 1’s is all columns. We have
now created an E-triplet.

Note that this switching of 1’s and 0’s does indeed correspond to removing
(as opposed to adding) coins from A, because even if all the columns to the
right of the nth column involve switching 0’s to 1’s, this addition of 2"~ — 1
coins is still less than the subtraction of the 2"~! coins arising from the 1-to-0
switch in the nth column.

3. This is true, by definition of an E-triplet.

The first two of these facts show that if player X receives an E-triplet on a given
turn, then player Y can ensure that X receives an E-triplet on every subsequent
turn. Therefore, X must always create a non-E-triplet, by the first of the three
facts. X therefore cannot take the last coin, because he cannot create the E-triplet
(0,0,0). Therefore, an E-triplet is a losing position. H

The best strategy in this game is therefore to give your opponent an E-triplet
whenever you can. If both players are aware of this strategy, then the outcome of



the game is determined by the initial piles of coins. If they form an E-triplet, then
the player who goes first loses. If they do not form an E-triplet, then the player who
goes first wins, because he can always create an E-triplet to give to his opponent.

REMARKS: If the starting numbers of coins are random, then the player who goes first will
most likely win, because most triplets are not E-triplets. We can demonstrate this fact by
using the somewhat crude scenario where the three numbers are random numbers from 0 to
2" — 1, that is, they each have n digits in base 2 (many of which may be zero). Then there
are (2")3 possible triplets. But there are only 4" possible E-triplets, because each of the n
columns of three digits (when we write the three numbers on top of each other) has four
E-triplet possibilities: 0,0,0; 1,1,0; 1,0,1; and 0,1,1. The fraction of E-triplets is therefore
4m /23" = 27" which goes to zero for large n.

Note that there is nothing special about having three piles. We can have any number of
piles (but still two players), and all the above reasoning still holds. Losing positions are the
ones that have an even number of 1’s in each column, when written in base 2. The three
facts in the above theorem still hold.



