NSTC Report on Quantum Information Science

July 27, 2016

Quantum defects in diamond provide a non-invasive, high-resolution image (right) of the magnetic field produced by a single tumor cell immersed in a sample of human blood. Conventional optical imaging (left) cannot detect the tumor cell because the blood scatters and absorbs light. Magnetic fields pass unaffected through the blood, allowing the magnetically sensitive quantum defects to detect the tumor cell. (Image credit: Walsworth Group/Harvard)


Superconductivity from a Confinement Transition out of a Fractionalized Fermi Liquid with Z2 Topological and Ising-Nematic Orders

July 8, 2016

Figure 2. Mean-field dispersion E+(k) of the fermionic spinons for the parameters (Δ1x, Δ1y, Δ2, t2x, t2y) = (0.9, 1, 0.4, 0.2, 0.2). The other band is not shown for clarity 1. [Reprinted by permission from APS © 2016.]