.

The Quest to Crystallize Time

March 9, 2017

Illumination with green light reveals a time crystal formed in a network of electron spins (red) within the defects of a diamond. [Courtesy: Georg Kucsko].

Time crystals are hypothetical structures that pulse without requiring any energy — like a ticking clock that never needs winding. The pattern repeats in time in much the same way that the atoms of a crystal repeat in space. The idea was so challenging that when Nobel prizewinning physicist Frank Wilczek proposed the provocative concept1 in 2012, other researchers quickly proved there was no way to create time crystals.

.

Quon 3D Language for Quantum Information

March 3, 2017

Prof. Jaffe (left) and postdoc Zhengwei Liu. Photo by Rose Lincoln/Harvard Staff Photographer.

Galileo called mathematics the “language with which God wrote the universe.” He described a picture-language, and now that language has a new dimension.

The Harvard trio of Arthur Jaffe, the Landon T. Clay Professor of Mathematics and Theoretical Science, postdoctoral fellow Zhengwei Liu, and researcher Alex Wozniakowski has developed a 3-D picture-language for mathematics with potential as a tool across a range of topics, from pure math to physics.

.

Holography of the Dirac Fluid in Graphene with Two Currents

January 18, 2017

Recent experiments have uncovered evidence of the strongly coupled nature of graphene: the Wiedemann-Franz law is violated by up to a factor of 20 near the charge neutral point. Profs. Philip Kim and Subir Sachdev and colleagues from Hanyang University, Seoul, described this strongly coupled plasma in a recent article in PRL. Their description uses a holographic model in which there are two distinct conserved U(1) currents.

Pages