Week 18 (1/13/03)

Distribution of primes

Let \(P(N) \) be the probability that a randomly chosen integer, \(N \), is prime. Show that

\[
P(N) = \frac{1}{\ln N}.
\]

Note: Assume that \(N \) is very large, and ignore terms in your answer that are of subleading order in \(N \). Also, make the assumption that the probability that \(N \) is divisible by a prime \(p \) is exactly \(1/p \) (which is essentially true, for a large enough sample size of numbers).

Correction: (Thanks to Bob Silverman for pointing this out.) The assumption, “the probability that \(N \) is divisible by a prime \(p \) is exactly \(1/p \),” it is actually not valid. More precisely, when dealing with a sufficiently large number of primes, the probability that a prime \(p \) divides \(N \) is not independent of the probability that a prime \(q \) divides \(N \). (This is related to Mertens’ theorem, which you can look up.) The solution I posted for this problem is therefore incorrect, even though it does end up giving the correct result of \(P(N) = 1/\ln N \). (A correction factor ends up canceling out.) However, you might still find it interesting to solve the problem using the given (invalid) assumption.