
Solution

Week 23 (2/17/03)

V (x) versus a hill

Quick solution: Consider the normal force, N , acting on the bead at a given
point. Let θ be the angle that the tangent to V (x) makes with the horizontal, as
shown.
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The horizontal F = ma equation is

−N sin θ = mẍ. (1)

The vertical F = ma equation is

N cos θ −mg = mÿ =⇒ N cos θ = mg + mÿ. (2)

Dividing eq. (1) by eq. (2) gives

− tan θ =
ẍ

g + ÿ
. (3)

But tan θ = V ′(x). Therefore,

ẍ = −(g + ÿ)V ′. (4)

We see that this is not equal to −gV ′. In fact, there is in general no way to
construct a curve with height y(x) which gives the same horizontal motion that a
1-D potential V (x) gives, for all initial conditions. We would need (g + ÿ)y′ = V ′,
for all x. But at a given x, the quantities V ′ and y′ are fixed, whereas ÿ depends
on the initial conditions. For example, if there is a bend in the wire, then ÿ will be
large if ẏ is large. And ẏ depends (in general) on how far the bead has fallen.

Eq. (4) holds the key to constructing a situation that does give the ẍ = −gV ′

result for a 1-D potential V (x). All we have to do is get rid of the ÿ term. So here’s
what we do. We grab our y = V (x) wire and then move it up (and/or down) in
precisely the manner that makes the bead stay at the same height with respect to
the ground. (Actually, constant vertical speed would be good enough.) This will
make the ÿ term vanish, as desired. (Note that the vertical movement of the curve
doesn’t change the slope, V ′, at a given value of x.)

Remark: There is one case where ẍ is (approximately) equal to −gV ′, even when
the wire remains stationary. In the case of small oscillations of the bead near a minimum
of V (x), ÿ is small compared to g. Hence, eq. (4) shows that ẍ is approximately equal to
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−gV ′. Therefore, for small oscillations, it is reasonable to model a particle in a 1-D potential
mgV (x) as a particle sliding in a valley whose height is given by y = V (x).

Long solution: The component of gravity along the wire is what causes the change
in speed of the bead. That is,

−g sin θ =
dv

dt
, (5)

where θ is given by

tan θ = V ′(x) =⇒ sin θ =
V ′

√
1 + V ′2 , cos θ =

1√
1 + V ′2 . (6)

We are, however, not concerned with the rate of change of v, but rather with the rate
of change of ẋ. In view of this, let us write v in terms of ẋ. Since ẋ = v cos θ, we have
v = ẋ/ cos θ = ẋ

√
1 + V ′2. (Dots denote d/dt. Primes denote d/dx.) Therefore, eq.

(5) becomes

−gV ′
√

1 + V ′2 =
d

dt

(
ẋ
√

1 + V ′2
)

= ẍ
√

1 + V ′2 +
ẋV ′(dV ′/dt)√

1 + V ′2 . (7)

Hence, ẍ is given by

ẍ =
−gV ′

1 + V ′2 −
ẋV ′(dV ′/dt)

1 + V ′2 . (8)

We’ll simplify this in a moment, but first a remark.

Remark: A common incorrect solution to this problem is the following. The accelera-
tion along the curve is g sin θ = −g(V ′/

√
1 + V ′2). Calculating the horizontal component of

this acceleration brings in a factor of cos θ = 1/
√

1 + V ′2. Therefore, we might think that

ẍ =
−gV ′

1 + V ′2 . (9)

But we have missed the second term in eq. (8). Where is the mistake? The error is that
we forgot to take into account the possible change in the curve’s slope. (Eq. (9) is true
for straight lines.) We addressed only the acceleration due to a change in speed. We forgot
about the acceleration due to a change in the direction of motion. (The term we missed
is the one with dV ′/dt.) Intuitively, if we have sharp enough bend in the wire, then ẋ
can change at an arbitrarily large rate. In view of this fact, eq. (9) is definitely incorrect,
because it is bounded (by g/2, in fact).

To simplify eq. (8), note that V ′ ≡ dV/dx = (dV/dt)/(dx/dt) ≡ V̇ /ẋ. Therefore,

ẋV ′dV ′

dt
= ẋV ′ d

dt

(
V̇

ẋ

)

= ẋV ′
(

ẋV̈ − V̇ ẍ

ẋ2

)

= V ′V̈ − V ′ẍ

(
V̇

ẋ

)

= V ′V̈ − V ′2ẍ. (10)
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Substituting this into eq. (8), we obtain

ẍ = −(g + V̈ )V ′, (11)

in agreement with eq. (4), since y(x) = V (x).
Eq. (11) is valid for a curve V (x) that remains fixed. If we grab the wire and

start moving it up and down, then the above solution is invalid, because the starting
point, eq. (5), rests on the assumption that gravity is the only force that does work
on the bead. But if we move the wire, then the normal force also does work.

It turns out that for a moving wire, we simply need to replace the V̈ in eq.
(11) by ÿ. This can be seen by looking at things in the (instantaneously inertial)
vertically-moving frame in which the wire is at rest. In this new frame, the normal
force does no work, so the above solution is valid. And in this new frame, ÿ = V̈ .
Eq. (11) therefore becomes ẍ = −(g + ÿ)V ′. Shifting back to the lab frame (which
moves at constant speed with respect to the instantaneous inertial frame of the
wire) doesn’t change ÿ. We thus arrive at eq. (4), valid for a stationary or vertically
moving wire.
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