Solution
Week 55 (9/29/03)

Fixed highest point

For the desired motion, the important thing to note is that every point in the top moves in a fixed circle around the \hat{z}-axis. Therefore, ω points vertically. Hence, if Ω is the frequency of precession, we have $\omega = \Omega \hat{z}$, as shown.

We’ll need to use $\tau = dL/dt$ to solve this problem, so let’s first calculate L. With the pivot as the origin, the principle axes are shown above (and \hat{x}_1 points into the page, but it won’t come into play here). The principal moments are

$$I_3 = \frac{MR^2}{2}, \quad \text{and} \quad I \equiv I_1 = I_2 = M\ell^2 + \frac{MR^2}{4}, \quad (1)$$

where we have used the parallel-axis theorem to obtain the latter. The components of ω along the principal axes are $\omega_3 = \Omega \cos \theta$, and $\omega_2 = \Omega \sin \theta$. Therefore, we have

$$L = I_3 \omega_3 \hat{x}_3 + I_2 \omega_2 \hat{x}_2 = I_3 \Omega \cos \theta \hat{x}_3 + I \Omega \sin \theta \hat{x}_2, \quad (2)$$

where we have kept things in terms of the moments, I_3 and I, to be general for now. The horizontal component of L is

$$L_\perp = L_3 \sin \theta - L_2 \cos \theta = (I_3 \Omega \cos \theta) \sin \theta - (I \Omega \sin \theta) \cos \theta = (I_3 - I) \Omega \cos \theta \sin \theta, \quad (3)$$

with rightward taken to be positive. This horizontal component spins around in a circle with frequency Ω. Therefore, dL/dt has magnitude

$$\left| \frac{dL}{dt} \right| = L_\perp \Omega = \Omega^2 \sin \theta \cos \theta (I_3 - I), \quad (4)$$

and it is directed into the page (or out of the page, if this quantity is negative). dL/dt must equal the torque, which has magnitude $|\tau| = Mg\ell \sin \theta$ and is directed into the page. Therefore,

$$\Omega = \sqrt{\frac{Mg\ell}{(I_3 - I) \cos \theta}}, \quad (5)$$
We see that for a general symmetric top, the desired precessional motion (where the same “side” always points up) is possible only if

\[I_3 > I. \]

(6)

Note that this condition is independent of \(\theta \). For the problem at hand, \(I_3 \) and \(I \) are given in eq. (1), so we find

\[\Omega = \sqrt{\frac{4g\ell}{(R^2 - 4\ell^2)\cos \theta}}. \]

(7)

The necessary condition for the desired motion to exist is therefore

\[R > 2\ell. \]

(8)

Remarks:

1. Given that the desired motion does indeed exist, it is intuitively clear that \(\Omega \) should become very large as \(\theta \to \pi/2 \). But it is by no means intuitively clear (at least to me) that such motion should exist at all for angles near \(\pi/2 \).

2. \(\Omega \) approaches a non-zero constant as \(\theta \to 0 \), which isn’t entirely obvious.

3. If both \(R \) and \(\ell \) are scaled up by the same factor, we see that \(\Omega \) decreases. This also follows from dimensional analysis.

4. The condition \(I_3 > I \) can be understood in the following way. If \(I_3 = I \), then \(\mathbf{L} \propto \omega \), and so \(\mathbf{L} \) points vertically along \(\omega \). If \(I_3 > I \), then \(\mathbf{L} \) points somewhere to the right of the \(\hat{z} \)-axis (at the instant shown in the figure above). This means that the tip of \(\mathbf{L} \) is moving into the page, along with the top. This is what we need, because \(\boldsymbol{\tau} \) points into the page. If, however, \(I_3 < I \), then \(\mathbf{L} \) points somewhere to the left of the \(\hat{z} \)-axis, so \(d\mathbf{L}/dt \) points out of the page, and hence cannot be equal to \(\boldsymbol{\tau} \).