Solution

Week 83 (4/12/04)

The brachistochrone

First solution: In the figure below, the boundary conditions are \(y(0) = 0 \) and \(y(x_0) = y_0 \), with downward taken to be the positive \(y \) direction.

From conservation of energy, the speed as a function of \(y \) is \(v = \sqrt{2gy} \). The total time is therefore

\[
T = \int_0^{x_0} \frac{ds}{v} = \int_0^{x_0} \frac{\sqrt{1+y'^2}}{\sqrt{2gy}} \, dx. \tag{1}
\]

Our goal is to find the function \(y(x) \) that minimizes this integral, subject to the boundary conditions above. We can therefore apply the results of the variational technique, with a “Lagrangian” equal to

\[
L \propto \frac{\sqrt{1+y'^2}}{\sqrt{y}}. \tag{2}
\]

The Euler-Lagrange equation is

\[
\frac{d}{dx} \left(\frac{\partial L}{\partial y'} \right) = \frac{\partial L}{\partial y} \implies \frac{d}{dx} \left(\frac{1}{\sqrt{y}} \cdot y' \cdot \frac{1}{\sqrt{1+y'^2}} \right) = -\frac{\sqrt{1+y'^2}}{2y\sqrt{y}}. \tag{3}
\]

Using the product rule on the three factors on the left-hand side, and making copious use of the chain rule, we obtain

\[
-\frac{y'^2}{2y\sqrt{y}\sqrt{1+y'^2}} + \frac{y''}{\sqrt{y}\sqrt{1+y'^2}} - \frac{y'^2y''}{\sqrt{y}(1+y'^2)^{3/2}} = -\frac{\sqrt{1+y'^2}}{2y\sqrt{y}}. \tag{4}
\]

Multiplying through by \(2y\sqrt{y}(1+y'^2)^{3/2} \) and simplifying gives

\[
-2yy'' = 1+y'^2. \tag{5}
\]

We can integrate this equation if we multiply through by \(y' \) and rearrange to obtain

\[
\int \frac{2yy''}{1+y'^2} = -\int \frac{y'}{y}. \implies \ln(1+y'^2) = -\ln y + A
\]

\[
\implies 1+y'^2 = \frac{B}{y}. \tag{6}
\]
where $B \equiv e^A$. We must now integrate one more time. Solving for y' and separating variables gives
\[
\frac{\sqrt{y} \, dy}{\sqrt{B - y}} = \pm dx. \tag{7}
\]
A helpful change of variables to get rid of the square root in the denominator is $y \equiv B \sin^2 \phi$. Then $dy = 2B \sin \phi \cos \phi \, d\phi$, and eq. (7) simplifies to
\[
2B \sin^2 \phi \, d\phi = \pm dx. \tag{8}
\]
We can now make use of the relation $\sin^2 \phi = (1 - \cos 2\phi)/2$ to integrate this. The result is $B(2\phi - \sin 2\phi) = \pm 2x - C$, where C is an integration constant.

Now note that we may rewrite our definition of ϕ (which was $y \equiv B \sin^2 \phi$) as $2y = B(1 - \cos 2\phi)$. If we then define $\theta \equiv 2\phi$, we have
\[
x = \pm a(\theta - \sin \theta) \pm d, \quad y = a(1 - \cos \theta). \tag{9}
\]
where $a \equiv B/2$, and $d \equiv C/2$.

The particle starts at $(x, y) = (0, 0)$. Therefore, θ starts at $\theta = 0$, since this corresponds to $y = 0$. The starting condition $x = 0$ then implies that $d = 0$. Also, we are assuming that the wire heads down to the right, so we choose the positive sign in the expression for x. Therefore, we finally have
\[
x = a(\theta - \sin \theta), \quad y = a(1 - \cos \theta). \tag{10}
\]
This is the parametrization of a cycloid, which is the path taken by a point on the rim of a rolling wheel. The initial slope of the $y(x)$ curve is infinite, as you can check.

Second solution: Let’s use a variational argument again, but now with y as the independent variable. That is, let the chain be described by the function $x(y)$. The arclength is now given by $ds = \sqrt{1 + x'^2} \, dy$. Therefore, instead of the Lagrangian in eq. (2), we now have
\[
L \propto \frac{\sqrt{1 + x'^2}}{\sqrt{y}}. \tag{11}
\]
The Euler-Lagrange equation is
\[
\frac{d}{dy} \left(\frac{\partial L}{\partial x'} \right) = \frac{\partial L}{\partial x} \quad \implies \quad \frac{d}{dy} \left(\frac{1}{\sqrt{y}} \frac{x'}{\sqrt{1 + x'^2}} \right) = 0. \tag{12}
\]
The zero on the right-hand side makes things nice and easy, because it means that the quantity in parentheses is a constant. Call it D. We then have
\[
\frac{1}{\sqrt{y}} \frac{x'}{\sqrt{1 + x'^2}} = D \quad \implies \quad \frac{1}{\sqrt{y}} \frac{dx/dy}{\sqrt{1 + (dx/dy)^2}} = D
\]
\[
\implies \quad \frac{1}{\sqrt{y}} \frac{1}{\sqrt{(dy/dx)^2 + 1}} = D. \tag{13}
\]
This is equivalent to eq. (6), and the solution proceeds as above.
Third solution: Note that the “Lagrangian” in the first solution above, which is given in eq. (2) as
\[L = \frac{\sqrt{1 + y'^2}}{\sqrt{y}}, \] (14)
is independent of \(x \). Therefore, in analogy with conservation of energy (which arises from a Lagrangian that is independent of \(t \)), the quantity
\[E \equiv y' \frac{\partial L}{\partial y'} - L = \frac{y'^2}{\sqrt{y} \sqrt{1 + y'^2}} - \frac{\sqrt{1 + y'^2}}{\sqrt{y}} = \frac{-1}{\sqrt{y} \sqrt{1 + y'^2}} \] (15)
is a constant. We have therefore again reproduced eq. (6).